Derivatives of Logarithms

Part 1: Derivatives of Logs

If $f(x) = \ln(x)$, then $f'(x) = \frac{1}{x}$.

Example 1: Find the derivatives of the following:

a.)
$$y = 4 x^7 - 2 \ln(x)$$

b.)
$$f(x) = 3 x^4 \ln(x)$$

c.)
$$g(x) = \frac{x^2}{\ln(x)}$$

If $f(x) = \ln(u(x))$, then $f'(x) = \frac{u'(x)}{u(x)}$ (the chain rule)

Example 2: Find the derivatives of the following:

a.)
$$y = \ln(x^4)$$

b.)
$$f(x) = \ln(x^3 - x + 7)$$

c.)
$$z = \ln\left(\frac{2x^4}{(5x+7)^5}\right)$$

Part 1: Derivatives with log rules

<u>Logarithmic Rules</u>: Let M, N > 0 and $p \in \mathbb{R}$ and b > 0 and $b \neq 1$.

- 1.) $ln(e^x) = x$ (inverse function property) 2.) $e^{ln(x)} = x$, x > 0 (inverse function property)
- 3.) $ln(M \cdot N) = ln(M) + ln(N)$
- 4.) $\ln\left(\frac{M}{N}\right) = \ln(M) \ln(N)$
- 5.) $ln(M^p) = p \cdot ln(M)$ 6.) $log_b(x) = \frac{ln(x)}{ln(b)}$ (change of base formula)

Example 2c revisited: Find the derivative of $z = \ln(\frac{2 x^4}{(5 x + 7)^5})$ using log rules.

Example 3: Find the derivatives of the following:

a.)
$$s = \ln(t^3(t^2 - 1))$$

b.)
$$y = \ln(\sqrt[4]{\frac{3x+2}{x^2-5}})$$

c.)
$$f(x) = \ln(x^2(x^4 - x + 1)^{17})$$

Example 4 : If the cost function for a product is $C(x) = 1500 + 200 \ln(2 x + 1)$ where x is the number of units produced, then
a.) Find MC
b.) Find and interpret $\overline{MC}(100)$
c.) Does $C(x)$ always increase (does this result make sense)?

6 11.01 Outline.nb

Example 5: Between 1976 and 1998, the percent of moms who returned to work within one year of having a baby can be represented by $w(y) = 1.11 + 16.94 \ln(y)$ where y is in years since 1970. What is the expected rate of change of w ithis year (and what does this mean)?

Example 6: Find the following derivatives:

a.)
$$y = \log_4(x)$$

b.)
$$y = \log_6(x^4 - 4x^3 + 1)$$