16 SAMPLE EXAM

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.

1. Match up each entry in the first column to one in the second. A given entry in the second column can be used once, more than once, or not at all.

If a vector field ${f F}$ is the gradient of some scalar function, then ${f F}$ is	conservative
If a curve C is the union of a finite number of smooth curves, then	curl
C is If $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D , then $\int_C \mathbf{F} \cdot d\mathbf{r}$ is in D .	divergence
in D . If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$, \mathbf{F} is defined everywhere in \mathbb{R}^2 and $\partial P/\partial y = \partial Q/\partial x$, then \mathbf{F} is	flux
If a curve C doesn't intersect itself anywhere between its endpoints, then C is	irrotational
If F is a vector field on \mathbb{R}^3 then $\nabla \times \mathbf{F}$ is called the	path independent
If F is a vector field on \mathbb{R}^3 then $\nabla \cdot \mathbf{F}$ is called the	piecewise smooth
If F is a continuous vector field defined on an oriented surface S then $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is the	simple
If F is a vector field and curl F = 0 at a point P , then F is at P .	simply-connected

- **2.** Consider the oriented surface S for $z \ge 0$, consisting of the portion of the surface of the paraboloid $z = 4 (x^2 + y^2)$ above the xy-plane and with outward normal.
 - (a) What is the boundary curve $C = \partial S$ and what direction is its positive orientation?
 - (b) What surface S_1 and what assignment of a normal in the xy-plane has the same boundary curve $C = \partial S_1$ with the same orientation?
 - (c) Compute $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, if $\mathbf{F} = (xe^z 3y)\mathbf{i} + (ye^{z^2} + 2x)\mathbf{j} + (x^2y^2z^3)\mathbf{k}$.
- **3.** Parametrize the boundary curve C = dS of the surface S: $\frac{x^2}{9} + \frac{y^2}{9} + \frac{z^2}{16} = 1$, $z \le 0$, so that it has positive orientation with respect to S.

CHAPTER 16 VECTOR CALCULUS

- **4.** (a) Find a counterclockwise parametrization of the ellipse $x^2 + \frac{y^2}{4} = 1$.
 - (b) Compute the double integral

$$\iint_{0 \le x^2 + y^2/4 \le 1} 3x^2 y \, dA$$

Him: Can you find a vector function $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ such that $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 3x^3y$?

- **5.** Consider $\mathbf{F}(x, y, z) = -\frac{y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j} + z \mathbf{k}$.
 - (a) Compute $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where C is the circle $x^2 + y^2 = 1$ in the xy-plane, oriented counterclockwise.
 - (b) Show that $\operatorname{curl} \mathbf{F} = \langle 0, 0, 0 \rangle$ everywhere that \mathbf{F} is defined.
 - (c) Indicate why you cannot use Stokes' Theorem on this problem. [That is, explain why your answers to (a) and (b) don't contradict one another.]
- **6.** (a) Use the Divergence Theorem to show that, for a closed surface S with an outward normal which encloses a solid region B,

Volume
$$(B) = \iint_S \mathbf{F} \cdot d\mathbf{S}$$

where $\mathbf{F}(x, y, z) = \langle x, 0, 0 \rangle$.

- (b) Use part (a) to show that the volume enclosed by the unit sphere is $\frac{4}{3}\pi$.
- (c) Compute $\iint \mathbf{F} \cdot d\mathbf{S}$ if $\mathbf{F}(x, y, z) = \langle 3x, 4y, 5z \rangle$.
- 7. Compute the work done by the vector field $\mathbf{F}(x, y) = (\sin x + xy^2)\mathbf{i} + (e^y + \frac{1}{2}x^2)\mathbf{j}$ in \mathbb{R}^2 , where C is the path that goes around the unit square twice.

- **8.** Consider the vector field $\mathbf{F}(x, y, z) = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$.
 - (a) Compute curl F.
 - (b) If C is any path from (0, 0, 0) to (a_1, a_2, a_3) and $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, show that $\int_C \mathbf{F} \cdot d\mathbf{r} = \mathbf{a} \cdot \mathbf{a}$.
- **9.** Consider the vector fields $\mathbf{F}(x, y) = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$ and

$$G(x,y) = \frac{-(y-3)}{(x-2)^2 + (y-3)^2} \mathbf{i} + \frac{x-2}{(x-2)^2 + (y-3)^2} \mathbf{j}.$$
(a) Given that $\sup_{x \to 0} F(x) = 0$

(a) Given that $\operatorname{curl} \mathbf{F}(x, y) = \mathbf{0}$ for $(x, y) \neq (0, 0)$, compute $\operatorname{curl} \mathbf{G}(x, y)$ for $(x, y) \neq (2, 3)$.

CHAPTER 16 SAMPLE EXAM

(b) Below is the plot of the vector field $\mathbf{F}(x, y) + \mathbf{G}(x, y)$. Describe where this vector field is defined. Describe where it is irrotational.

10. Consider the shaded region below.

- (a) Draw arrows on the boundaries ∂R of R to give it a positive orientation.
- (b) If the outer circle has radius 4 and the two smaller circles have radius 1, evaluate $\frac{1}{2} \left(\int_{\partial R} y \, dx x \, dy \right)$.
- (c) Compute $\frac{1}{2} \left(\int_{\partial R_1} y \, dx x \, dy \right)$, where R_1 is the new shaded region in the figure below. Each smaller circle has radius 1.

11. Show that the surface parametrization given by $\mathbf{r}(s,t) = \left(2\cos t \sin s, \sin t \sin s, \frac{1}{\sqrt{2}}\cos s\right)$, where $0 \le t \le 2\pi$, $0 \le s \le \pi$, describes the ellipsoid $\frac{1}{4}x^2 + y^2 + 2z^2 = 1$.

CHAPTER 16 VECTOR CALCULUS

12. Consider the following vector field.F.

- (a) Is the line integral of F along the path from A to B positive, negative, or zero? How do you know?
- (b) Is the line integral of F along the path from C to D positive, negative, or zero? How do you know?

13. Consider the vector field below.

- (a) Draw and label a curve C_1 from (-1.5, 0) to (1.5, 0) such that $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} > 0$.
- (b) Draw and label a curve C_2 from (-1.5, 0) to (1.5, 0) such that $\int_{C_2} \mathbf{F} \cdot d\mathbf{s} < 0$.
- (c) Draw and label a curve C_3 from (-1.5,0) to (1.5,0) such that $\int_{C_3} \mathbf{F} \cdot d\mathbf{s} \approx 0$.

CHAPTER 16 SAMPLE EXAM

14. The following parametric surface has grid curves which can be shown to be circles when u is constant.

- (a) Find the center and radius of the circle at $u = \frac{\pi}{2}$.
- (b) Find the normal vector to S at the point P generated when $u=v=\frac{\pi}{2}$.
- 15. Find the equations for the following parametrized surfaces in rectangular coordinates, and describe them in words.

(a)
$$\langle t, \sqrt{1-t^2} \sin s, \sqrt{1-t^2} \cos s \rangle$$

(b)
$$\langle t^2, s^2, s^2 + t^2 \rangle$$

16. Find a parametric representation for the surface $z = \theta$ in cylindrical coordinates.

17. Consider the surfaces S_1 : $\frac{x^2}{9} + \frac{y^2}{9} + \frac{z^2}{4} = 1$, $z \ge 0$ and S_2 : $4z = 9 - x^2 - y^2$, $z \ge 0$. Let **F** be any vector field with continuous partial derivatives defined everywhere. Show that $\iint_{S_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$.

FAX NO. 206 870 4803

P. 06/06

18. Set up and evaluate the integral for the surface area of the parametrized surface
$$x = u + v \qquad v = u - v \qquad 7 = 2u + 2v$$

$$x = u + v \qquad y = u - v \qquad z = 2u + 3v$$

$$0 \le u \le 1 \qquad 0 \le v \le 1$$

OCT-01-2008 WED 08:29 AM HCC BLDG, 15