15 SAMPLE EXAM

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.

- 1. Consider the function $f(x, y) = x^y$ on the rectangle $[1, 2] \times [1, 2]$.
 - (a) Approximate the value of the integral $\int_1^2 \int_1^2 f(x,y) \, dy \, dx$ by dividing the region into four squares and using the function value at the lower left-hand corner of each square as an approximation for the function value over that square.
 - (b) Does the approximation give an overestimate or an underestimate of the value of the integral? How do you know?
- **2.** Given that $\int_0^{\pi/2} \frac{dx}{1 + \sin^2 x} = \frac{\pi}{2\sqrt{2}}$,
 - (a) evaluate the double integral

$$\int_0^{\pi/2} \int_0^{\pi/2} \frac{1}{(1+\sin^2 x) (1+\sin^2 y)} \, dx \, dy$$

(b) evaluate the triple integral

$$\int_0^{\pi/2} \int_0^{\pi/2} \int_{1/(1+\sin^2 x)}^{1/(1+\sin^2 y)} dz \, dx \, dy$$

3. Consider the rugged region below:

- (a) Divide the region into smaller regions, all of which are Type I.
- (b) Divide the region into smaller regions, all of which are Type II.
- Rewrite the integral

$$\int_0^{2\pi} \int_0^1 r^2 dr d\theta$$

in rectangular coordinates.

CHAPTER 15 SAMPLE EXAM

5. Evaluate $\iint_D \cos(x^2 + y^2) dA$, where $D = \{(x, y) \mid 1 \le x^2 + y^2 \le 4\}$ is a washer with inner radius 1 and outer radius 2.

6. Consider the ellipse $x^2 + 2y^2 = 1$.

- (a) Rewrite this equation in polar coordinates.
- (b) Write an integral in polar coordinates that gives the area of this ellipse. *Note:* Your answer will not look simple.
- **7.** Consider the rectangular prism R pictured below:

Compute $\iiint_R 10 dV$ and $\iiint_R x dV$.

CHAPTER IS MULTIPLE INTEGRALS

8. (a) Compute

$$\int_0^1 \int_{-1}^1 \int_0^{xy} 1 \, dz \, dx \, dy$$

and give a geometric interpretation of your answer.

(b) Compute

$$\int_0^1 \int_{-1}^1 \int_0^{|xy|} 1 \, dz \, dx \, dy$$

and give a geometric interpretation of your answer.

9. A light on the z-axis, pointed at the origin, shines on the sphere $\rho = 1$ such that $\frac{1}{4}$ of the total surface area is lit. What is the angle ϕ ?

10. Consider the region R enclosed by y = x, y = -x + 2, $y = -\sqrt{1 - (x - 1)^2}$:

Set up the following integrals as one or more iterated integrals, but do not actually compute them:

- (a) $\iint_R (x+y) \, dy \, dx$
- (b) $\iint_{R} (x+y) dx dy$

CHAPTER 15 SAMPLE EXAM

11. Consider the region R enclosed by y = x + 1, y = -x + 1, and the x-axis.

- (a) Set up the integral $\iint_R xy \, dx \, dy$ in polar coordinates.
- (b) Compute the integral $\iint_R xy \, dx \, dy$ using any method you know.
- 12. Consider the double integral

$$\iint_{R} \frac{1}{9 - (x^2 + y^2)^{3/2}} \, dA$$

where R is given by the region between the two semicircles pictured below:

- (a) Compute the shaded area.
- (b) Show that the function $\frac{1}{9-(x^2+y^2)^{3/2}}$ is constant on each of the two bounding semicircles.
- (c) Give a lower bound and an upper bound for the double integral using the above information.
- 13. Observe the following Pac-Man:

- (a) Describe him in polar coordinates.
- (b) Evaluate $\iint_{\text{Pac-Man}} x \, dA$ and $\iint_{\text{Pac-Man}} y \, dA$.

14. Consider the triple integral

$$\int_0^1 \int_{y^3}^{\sqrt{y}} \int_0^{xy} dz \, dx \, dy$$

representing a solid S. Let R be the projection of S onto the plane z=0.

- (a) Draw the region R.
- (b) Rewrite this integral as $\iiint_S dz \, dy \, dx$.
- **15.** Consider the transformation T: x = 2u + v, y = u + 2v.
 - (a) Describe the image S under T of the unit square $R = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$ in the uv-plane using a change of coordinates.
 - (b) Evaluate $\iint_S (3x + 2y) dA$
- **16.** What is the volume of the following region, described in spherical coordinates: $1 \le \rho \le 9$, $0 \le \theta \le \frac{\pi}{2}$, $\frac{\pi}{6} \le \phi \le \frac{\pi}{4}$?
- 17. Consider the transformation $x = v \cos 2\pi u$, $y = v \sin 2\pi u$.
 - (a) Describe the image S under T of the unit square $R = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$.
 - (b) Find the area of S.
- **18.** Consider the function f(x, y) = ax + by, where a and b are constants. Find the average value of f over the region $R = \{(x, y) \mid -1 \le x \le 1, -1 \le y \le 1\}$.