14 SAMPLE EXAM

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.

- 1. (a) Consider the function $f(x, y) = \frac{1}{x^2 + y^2 + 1}$. Find equations for the following level surfaces for f, and sketch them.
 - (i) $f(x, y) = \frac{1}{5}$
 - (ii) $f(x, y) = \frac{1}{10}$
 - (b) Find k such that the level surface f(x, y) = k consists of a single point.
 - (c) Why is k the global maximum of f(x, y)?
- **2.** Is the function $f(x, y) = \sin^2(xy^2)$ a solution to the partial differential equation $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = (2x + y)(2y)\cos(xy^2)\sqrt{f} \text{ when } \sin(xy^2) \ge 0?$
- 3. Is it possible to find a function for which it is true that, for all x > 0 and y > 0, $f_x > 0$ and $f_y < 0$, and f(x, y) > 0? If so, give an example. If not, why not?

4.

The above is a topographical map of a hill.

- (a) Starting at P, sketch the path of steepest ascent to the peak elevation of 50 yards.
- (b) Suppose it rains, and water runs down the hill starting at Q. At what point would you expect the water to reach the bottom? Justify your answer.

14.2

- 5. Find the absolute maximum and minimum of $f(x, y) = x^2 + xy + y^2$ on the disk $(x, y) + x^2 + y^2 \le 9$.
- **6.** Consider the ellipsoid $\frac{x^2}{4} + 2z^2 + \frac{y^2}{4} = 1$. Using geometric reasoning or otherwise, find the equation of the tangent plane at
 - (a) $(\sqrt{2}, \sqrt{2}, 0)$
 - (b) $(0, 0, \frac{1}{\sqrt{2}})$.
- 7. Describe the level surfaces f(x, y, z) = k for the function $f(x, y, z) = 1 x^2 \frac{y^2}{2} \frac{z^2}{3}$ and the values k = -1, k = 1, and k = 2.

CHAPTER 14 SAMPLE EXAM

- 8. Suppose that the amount of energy F(x, y, z) emanating from a source at (0, 0, 0) is inversely proportional to one more than the square of the distance from the origin measured only in the the xy-plane, and is directly proportional to the height above the xy-plane. Assume that all of the constants of proportionality are equal to 1.
 - (a) What is an equation for the energy as a function of x, y, and z?
 - (b) Where is there no energy at all?
 - (c) Sketch the level surface F(x, y, z) = 1.
- 9. Consider the function

$$f(x, y) = \frac{x + y}{|x| + |y|}$$

- (a) Evaluate the following
 - (i) f(1, 1)
 - (ii) f(1,-1)
 - (iii) f(-1, 1)
 - (iv) f(-1, -1)

10. Consider the function

14,2 (b) Does this function have a limit of (0,0)?

14.2

(a) Compute $f_x(0, 0)$ directly from the limit definition of a partial derivative

 $f_x(x_0, y_0) = \lim_{h \to 0} \underbrace{\int (x_0 + h, y_0) - \int (x_0, y_0)}_{h}$

- (b) Compute f_y (0, 0).
- 11. If f(0,0) = 0, $f_x(0,0) = 0$, $f_y(0,0) = 0$, and f(x,y) is differentiable at (0,0), does this imply that f(x,y) = 0 for some point $(x,y) \neq (0,0)$? Justify your result, or give a counterexample.
- 12. Consider the sphere $x^2 + y^2 + z^2 = 9$. Find the equation of the plane tangent to this sphere at
 - (a) (3,0,0).
 - (b) (2, 2, 1).
- 13. Suppose that $f(x, y) = e^{x-y}$ and $f(\ln 2, \ln 2) = 1$. Use the technique of linear approximation to estimate $f(\ln 2 + 0.1, \ln 2 + 0.04)$.
- **14.** Let g(u) be a differentiable function and let $f(x, y) = g(x^2 + y^2)$.
 - (a) Show that $yf_x = xf_y$.
 - (b) Find the direction of maximal increase of f at (1, 1) in terms of g'.

CHAPTER 14 PARTIAL DERIVATIVES

15. Let f be a function of two variables with the following properties:

•
$$\frac{\partial f}{\partial x}$$
 is defined near (0, 0), continuous at (0, 0) and $\frac{\partial f}{\partial x}$ (0, 0) = 0

•
$$\frac{\partial f}{\partial y}$$
 is defined near (0, 0), continuous at (0, 0) and $\frac{\partial f}{\partial y}$ (0, 0) = 0

$$\bullet \ \frac{\partial^2 f}{\partial x \partial y} (0,0) = 1$$

$$\bullet \frac{\partial^2 f}{\partial y \partial x} (0,0) = -1$$

Answer true or false to the following, and give reasons for your answers.

(a) f is differentiable at (0, 0).

(b) There is a horizontal plane that is tangent to the graph of f at (0, 0).

(c) The functions
$$\frac{\partial^2 f}{\partial x \partial y}$$
 and $\frac{\partial^2 f}{\partial y \partial x}$ are both continuous at $(0, 0)$.

(d) The linear approximation to f(x, y) at (0, 0) is L(x, y) = x - y.

16. Suppose
$$\mathbf{u} = \langle 1, 0 \rangle$$
, $\mathbf{v} = \left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$, $D_{\mathbf{u}}(f(a, b)) = 3$ and $D_{\mathbf{v}}(f(a, b)) = \sqrt{2}$.

(a) Find $\nabla f(a, b)$.

(b) What is the maximum possible value of $D_{\mathbf{w}}(f(a, b))$ for any \mathbf{w} ?

(c) Find a unit vector $\mathbf{w} = \langle w_1, w_2 \rangle$ such that $D_{\mathbf{w}}(f(a, b)) = 0$.

17. Let $f/(x, y) = e^{-(x^2+y^2)}$. Find the maximum and minimum values of f on the rectangle shown below.

Justify your answer.

(-1, 3)

(4, 3)

18. Which point on the surface $\frac{1}{x} + \frac{1}{y} + \left(\frac{1}{z} = 1, x, y, z > 0\right)$ is closest to the origin!