1. (a) A double Riemann sum of j^{\prime} is $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$, where ΔA is the area of each subrectangle and ($\left.x_{i j ;}^{*}, y_{7_{j}^{*}}^{*}\right)$ is a sample point in each subrectangle. If $f(x, y) \geq 0$, this sum represents an approximation to the volume of the solid that lies above the retangle R, and below the graph of f.
(b) $\iint_{\pi} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{i=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$
(c) If $f(x, y) \geq 0, \iint_{R} f(x, y) d A$ reprepents the volume of the solid that lies above the rectangle R and below the surface $z=f(x, y)$. If f takes on both positive and negative values, $\iint_{\Omega} f(x, y) d A$ is the difrerence of the volume above R but below the surface $x=f(x, y)$ and the volume below R but above the surface,$\vec{j}=f(x, y)$.
(d) We usually evaluate $\iint_{R} f(x, y) d A$ as an iterated integral according to Fubini's Theorem (see Theorem 16.2 .4 [ET 15.2.4]).
(e) The Midpoint Rule for Double Tntegrals says that we approximate the double integral $\iint_{f} f(x, y) d A$ by the double Riemann sum $\sum_{t=1}^{m} \sum_{j=1}^{n} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A$ whete the sample points $\left(\bar{x}_{i}, \bar{y}_{j}\right)$ are the centers of the subrectangles.
(f) $f_{\mathrm{uva}}=\frac{1}{A(R)} \iint_{\Omega} f(x, y) d A$ where $A(R)$ is the area of R.
2. (a) See (1) and (2) and the nepompanying discussion in Seetion 16.3 [ET 15.3].
(b) See (3) and the accompanying discussion in Section 16.3 [ET 15.3].
(c) See (5) and the preceding discussion in Section 16.3 [ET 15.3].
(d) See (6) (11) in Section 16.3 [ET 15.3].
3. We may want to change from rectangular to polar coordinates in a double integral if the region R of integration is more easily described in polar coordinates. To accomplish this, we use $\iint_{A} f(x, y) d A=\int_{a}^{\theta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta$ where R is given by $0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta$.
4. (a) $m=\iint_{D} \rho(x, y) d A$
(b) $M_{i f}=\iint_{D} y \rho(x, y) d A, M_{y}=\iint_{D} x \rho(x, y) d A$
(c) The center of mass is (\bar{x}, \bar{y}) where $\bar{x}=\frac{M_{y}}{m}$ and $\bar{y}=\frac{M_{\underline{x}}}{m}$.
(d) $I_{x}=\iint_{D} y^{2} \rho(x, y) d A, I_{y}=\iint_{D} x^{2} \rho(x, y) d A, I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A$
5. (a) $P(a \leq X \leq b, c \leq Y \leq d)=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$
(b) $f(x, y) \geq 0$ and $\iint_{\mathbb{R}^{1}} f(x, y) d A=1$.
(c) The expected value of X is $\mu_{1}=\iint_{\mathbb{R}^{2}} x f(x, y) d A$; the expected value of Y is $\mu_{2}=\iint_{\mathbb{R}^{2}} y f(x, y) d A$,
6. (a) $\iiint_{B} f(x, y, z) d V=\lim _{t, m, n} \sum_{i=1}^{1} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j h}^{\pi}\right) \Delta V$
(b) We usually evaluate $\iiint_{B} f(x, y, z) d V$ as an itcrated integral according to Fubini's Theorem for Triple Intectrals (see Theorem 16.6.4 [ET 15.6.4]).
(c) See the paragraph Following Example 16.6 .1 [ET 15.6.1].
(d) See (5) and (6) and the accompanying discission in Section 16.6 [ET 15.6].
(c) See (10) and the aecompanying discussion in Section 16.6 [ET 15.6].
(f) See (l1) and the preceding discussion in Section 16.6 [ET 15.6].
7. (a) $m=\iiint_{E} \rho(x, y, z) d V$
(b) $M_{y z}=\iiint_{E} x \rho(x, y, z) d V, M_{x z}=\iiint_{E} y \rho(x, y, z) d V, M_{\Phi v}=\iiint_{E} z \rho(x, y, z) d V$.
(c) The center of mass is $(\bar{x}, \bar{y}, \bar{z})$ where $\bar{x}=\frac{M_{y z}}{\pi t}, \bar{y}=\frac{M_{x \bar{z}}}{m}$, and $\overline{\bar{x}}=\frac{M_{\bar{y}}}{\pi t}$.
(d) $I_{x}=\iiint_{E}\left(y^{2}+z^{4}\right) \rho(x, y, z) d V, I_{y}=\iiint_{E}\left(x^{2}+z^{2}\right) \rho(x, y, z) d V, I_{z}=\iiint_{E}\left(x^{2}+y^{2}\right) \rho(x, y, z) d V$.
8. (a) See Formula 16.7.4 [ET 15.7.4] and the accompanying disenssion.
(b) See Formula 16.8 .3 [ET 15.8.3] and the accompanying discussion.
(c) We may want to change from rectangular to cylindricai or sphencal coordipates in a triple integral if the region E of integration is more casily described in cylindrical or spherical coordinates or if the riple integral is easier to evaluate using cylindrical or sphericul coordinates.
9. (a) $\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}\partial x / \partial u & \partial x / \partial v \\ \partial y / \partial u & \partial y / \partial u\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$
(b) See (9) and the accompanying discussion in Section 16.9 [ET 15.9],
(c) See (13) and the aecompanying discussion in Section 16.9 [ET 15.9],
10. This is true by Fubini's Theorem.
11. False. $\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} d y d x$ describes the region of integration as a Type I region, To reverse the order of integration, we must consider the region as a Type II revion: $\int_{0}^{t} \int_{4}^{2} \sqrt{x+y^{2}} d x d y$.
12. True by Equation 16.2.5 [ET 15.2.5].
13. $\int_{-1}^{1} \int_{0}^{1} e^{x^{2}+y^{2}} \sin y d x d y=\left(\int_{10}^{1} e^{x^{2}} d x\right)\left(\int_{-1}^{1} c^{y^{3}} \sin y d y\right)=\left(\int_{0}^{1} e^{m^{3}} d x\right)(0)=0$, since $e^{y^{2}} \sin y$ is an odd function. Therefore the statement is true.
14. True: $\quad \iint_{D} \sqrt{4-x^{2}-y^{2}} d A=$ the volume under the surface $x^{2}+y^{2}+y^{2}=4$ and above the ay-piane

$$
=\frac{1}{2}\left(\text { the volume of the sphere } x^{2}+y^{2}+x^{1}=4\right)=\frac{1}{2}, \frac{4}{3} \pi(2)^{3}=\frac{10}{3} \pi
$$

6. This staternenli is true because in the given region, $\left(x^{3}+\sqrt{y}\right) \sin \left(x^{2} y^{2}\right) \leq(1+2)(1)=3$, so $\int_{1}^{4} \int_{0}^{1}\left(x^{2}+\sqrt{y}\right) \sin \left(x^{2} y^{2}\right) d x d y \leq \int_{1}^{4} \int_{0}^{1} 3 d A=3 A(D)=3(3)=9$.
7. The volume enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=2$ is, in cylindrical coordinates, $V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{T}^{2} r d x d r d \theta \neq \int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2,} d z d r d \theta$, so the assertion is false.
8. True. The moment of incrtia about the z-axis of a solid E with constant density k is $I_{\underline{z}}=\iiint_{E}\left(a^{2}+y^{4}\right) \rho(x, y, z) d V=\iiint_{B}\left(h r^{2}\right) r d z d r d \theta=\iiint_{E} k r^{3} d z d r d \theta$.

EXERC|SES

1. As shown in the contour map, we divide R into 9 equally sized subsquares, each with yrea $\Delta_{\mathrm{A}} A=1$. Then we approximate $\iint_{F} f(n, y) d A$ by a Riemann sum with $m=r=3$ and the sample points the upper right comers of each square, so

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\sum_{i=1}^{3} \sum_{j=1}^{3} f\left(x_{i}, y_{j}\right) \Delta A \\
& =\Delta A[f(1,1)+f(1,2)+f(1,3)+f(2,1)+f(2,2)+f(2,3)+f(3,1)+f(3,2)+f(3,3)]
\end{aligned}
$$

Using the contour lines to estimale the function values, we have

$$
\iint_{R 2} f(x, y) d A \approx 1[2.7+4.7+8.0-4.7+6.7+10.0+6.7+8.6+1.1 .9] \approx 64.0
$$

2. As in Exercise l. we have $m=\pi=3$ and $\Delta A=1$. Using the contour map to estimate the value of f at the center of each subsquare, we have

$$
\begin{aligned}
\iint_{R} f(x, y) d A \approx & \sum_{i=1}^{3} \sum_{j=7}^{3} f\left(\mathbb{F}_{i}, \bar{y}_{j}\right) \Delta A \\
= & \Delta A[f(0.5,0.5)+(0.5,1.5)+(0.5,2.5)+(1.5,0.5)+f(1.5,1.5) \\
& \quad+f(1.5,2.5)+(2.5,0.5)+f(2.5,1.5)+f(2.5,2.5)] \\
\approx & 1[1.2+2.5+5.0+3.2+4.5+7.1+5.2+6.5+9.0]=44.2
\end{aligned}
$$

$$
=4+4 e^{2}-1-4 e=4 e^{4}-4 e+3
$$

4. $\int_{0}^{1} \int_{0}^{1} y e^{\pi y} d x d y=\int_{0}^{11}\left[e^{\pi, y}\right]_{2=0}^{m, n} d y=\int_{0}^{1}\left(e^{u}-1\right) d y=\left[e^{y}-y\right]_{0}^{1}=e-2$
5. $\left.\int_{0}^{1} \int_{0}^{i x} \cos \left(x^{2}\right) d y d x=\int_{0}^{1}\left[\cos \left(x^{2}\right) y\right] y=0 \quad d x=\int_{0}^{1]} x \cos \left(x^{2}\right) d x=\frac{1}{2} \sin \left(x^{2}\right)\right]_{0}^{1}=\frac{1}{2} \sin 1$

$$
=\frac{1}{3} e^{3}-\left[\frac{1}{9} e^{3: i r}\right]_{0}^{1}-\frac{1}{8}=\frac{2}{9} e^{3}-\frac{4}{d!}
$$

7. $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} y \sin x d x d y d x=\int_{0}^{\pi} \int_{0}^{11}[(y \sin x) x]_{z=0}^{x=\sqrt{1-y^{2}}} d y d x=\int_{0}^{\pi^{1}} \int_{0}^{2} y \sqrt{1-y^{2}} \sin x d y d x$

$$
\left.=\int_{0}^{\pi}\left[-\frac{1}{3}\left(1-y^{2}\right)^{a / 2} \sin x\right]_{y=0}^{y=1} d x=\int_{0}^{\pi} \frac{1}{3} \sin x d x=-\frac{1}{3} \cos x\right]_{0}^{\pi}=\frac{2}{4}
$$

$$
=\int_{0}^{1}\left[\frac{3}{2} x^{2} y-\frac{3}{4} x^{4} y\right]_{i=0}^{x=y} d y=\int_{0}^{1}\left(\frac{3}{2} y^{3}-\frac{3}{4} y^{5}\right) d y=\left[\frac{3}{8} y^{4}-\frac{1}{3} y^{6}\right]_{0}^{1}=\frac{1}{4}
$$

9. The region R is more easily described by polar coordinates: $R=\{(r, \theta) \mid 2 \leq \tau \leq 4,0 \leq \theta \leq \pi\}$. Thus $\iint_{R .} f(x, y) d A=\int_{[1}^{\pi} \int_{2}^{A} f(r \cos \theta, r \sin \theta) r d r d \theta$.
10. The region f is a type II region that can be deseribed as the region enclosed by the lines $y=4-x, y=4+x$, and the x-axis. So using rectangular coordinates, we can say $R=\{(x, y) \mid y-4 \leq x \leq 4-y, 0 \leq y \leq 4\}$ and $\iint_{R} f(x, y) d A=\int_{0}^{4} \int_{y-4}^{d-y} f(x, y) d x d y$.
11.

The region whose area is given by $\int_{0}^{\pi / 2} \int_{0}^{\sin 3 \theta} r d r d \theta$ is $\left\{(r, \theta) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{2}\right., 0 \leq r \leq \sin 2 \theta\right\}$, which is the region contained in the loop in the firgt quadrant of the four-letved rose $r=\sin 2 \theta$.
12. The solid is $\left\{(\rho, \theta, \phi) \mid 1 \leq \rho \leq 2,0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq \frac{\pi}{4}\right\}$ which is the region in the first octant on or between the two spheres $\rho=7$, and $\rho=2$.
13.

$$
\begin{aligned}
\int_{0}^{7} \int_{2}^{1} \cos \left(y^{2}\right) d y d x & =\int_{0}^{1} \int_{0}^{2 y} \cos \left(y^{2}\right) d x d y \\
& =\int_{0}^{1} \cos \left(y^{2}\right)[x]_{0=0}^{\pi=1 y} d y=\int_{0}^{1} y \cos \left(y^{2}\right) d y \\
& =\left[\frac{1}{3} \sin \left(y^{2}\right)\right]_{0}^{1}=\frac{1}{2} \sin 7
\end{aligned}
$$

14.

$$
\begin{aligned}
\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{y e^{x^{3}}}{x^{3}} d x d y & =\int_{0}^{1} \int_{0}^{1 x^{2}} \frac{y e^{x^{3}}}{x^{3}} d y d x=\int_{0}^{1} \frac{e^{x^{2}}}{x^{4}}\left[\frac{1}{3} y^{2}\right]_{y=1 x^{2}}^{y=\pi} d x \\
& \left.=\int_{0}^{1} \frac{1}{2} x e^{x^{2}} d x=\frac{1}{4} x^{x^{2}}\right]_{0}^{1}=\frac{1}{4}(e-1)
\end{aligned}
$$

15. $\iint_{\Omega} y e^{x y} d A=\int_{0}^{a} \int_{0}^{12} y e^{\pi y} d x d y=\int_{0}^{3}\left[e^{i x y}\right]_{x=0}^{x=2} d y=\int_{0}^{3}\left(e^{2 x}-1\right) d y=\left[\frac{1}{2} e^{a y}-y\right]_{0}^{3}=\frac{1}{2} e^{\theta}-3-\frac{1}{2}=\frac{1}{2} e^{a}-\frac{7}{2}$
16. $\iint_{D} x y d A=\int_{0}^{1} \int_{y^{2}}^{y^{2+1}} x y d x d y=\int_{0}^{1} y\left[\frac{1}{2} x^{2}\right]_{\square=y^{2}}^{x=w+3} d y=\frac{1}{2} \int_{0}^{7} y\left((y+2)^{2}-y^{4}\right) d y$

$$
=\frac{1}{2} \int_{0}^{1}\left(y^{3}+4 y^{2}+4 y-y^{6}\right) d y=\frac{1}{2}\left[\frac{1}{4} y^{4}+\frac{4}{3} y^{3}+2 y^{2}-\frac{1}{6} y^{6}\right]_{0}^{1}=\frac{41}{31}
$$

17.

$$
\begin{aligned}
\iint_{D} \frac{y}{1+-x^{2}} d A & =\int_{0}^{7} \int_{0}^{\sqrt{x}} \frac{y}{1+x^{2}} d y d x=\int_{0}^{1} \frac{1}{7+\mathbb{F}^{2}}\left[\frac{1}{2} y^{2}\right]_{y=0}^{y=\sqrt{x}} d x \\
& =\frac{1}{2} \int_{0}^{1} \frac{x}{1+x^{2}} d x=\left[\frac{1}{4} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\frac{1}{4} \ln 2
\end{aligned}
$$

18. $\iint_{D} \frac{1}{1-x^{2}} d A=\int_{0}^{1} \int_{x}^{1} \frac{1}{1+x^{2}} d y d x=\int_{0}^{1} \frac{1}{1+x^{2}}[y]_{y=m}^{p=1} d x=\int_{0}^{1} \frac{1-x}{1+x^{2}} d x=\int_{0}^{1}\left(\frac{1}{1+x^{2}}-\frac{d}{1+x^{2}}\right) d x$

$$
=\left[\tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{1}=\operatorname{tar}^{-1} 1-\frac{1}{2} \ln 2-\left(\tan ^{-1} 0-\frac{1}{3} \ln 1\right)=\frac{\pi}{4}-\frac{1}{2} \ln 2
$$

19.

$$
\iint_{D} y d A=\int_{0}^{2} \int_{y^{\frac{1}{*}}}^{8-y^{2}} y d x d y
$$

$$
=\int_{10}^{2} y[x]_{x+\sin y^{2}}^{x-5-y^{2}} d y=\int_{0}^{2} y\left(8-y^{4}-y^{2}\right) d y
$$

$$
=\int_{0}^{2}\left(8 y-2 y^{3}\right) d y=\left[4 y^{2}-\frac{1}{2} y^{4}\right]_{0}^{2}=8
$$

20.

21.

22. $\iint_{D} x d A=\int_{0}^{\pi / 2} \int_{1}^{\sqrt{2}}(r \cos \theta) r d r d \theta=\int_{0}^{\pi / 2} \cos \theta d \theta \int_{1}^{\sqrt{2}} r^{3} d r=[\sin \theta]_{0}^{\pi / 2}\left[\frac{1}{3} r^{3}\right]_{I}^{\sqrt{2}}$

$$
=1 \cdot \frac{1}{3}\left(2^{3 / 2}-1\right)=\frac{1}{3}\left(2^{3 / 2}-1\right)
$$

23. $\iiint_{E} x y d V=\int_{0}^{3} \int_{0}^{w} \int_{0}^{\pi+y} x y d z d y d x=\int_{0}^{3} \int_{0}^{x} x y[z]_{z=0}^{x=x+y} d y d x=\int_{0}^{3} \int_{0}^{x} x y(x+y) d y d x$

$$
=\int_{0}^{3} \int_{0}^{x}\left(x^{3} y+x y^{2}\right) d y d x=\int_{0}^{3}\left[\frac{t}{3} x^{2} y^{3}+\frac{1}{3} x y^{3}\right]_{y=0}^{y=x} d y=\int_{0}^{3}\left(\frac{1}{3} x^{1}+\frac{1}{3} x^{4}\right) d x
$$

$$
=\frac{5}{6} \int_{0}^{3} x^{4} d x=\left[\frac{1}{6} x^{5}\right]_{0}^{3}=\frac{47}{7}=40.5
$$

24. $\iiint_{T} x y d V=\int_{0}^{1 / 3} \int_{0}^{1-3 x} \int_{0}^{1-3 x-y} x y d \pm d y d x=\int_{0}^{1 / 3} \int_{0}^{1-2 x} x y(1-3 x-y) d y d x$

$$
\begin{aligned}
& =\int_{0}^{1 / 3} \int_{0}^{2}-3: x \\
& =\int_{0}^{1 / 3}\left[\frac{1}{2} x y^{2}-\frac{3}{2} x^{2} y^{2}-\frac{1}{3} x x^{2} y-x y^{2}\right) d y d x \\
& =\int_{0}^{1 / 3}\left[\frac{1}{2} x(1-3 x)^{2}-\frac{3}{2} x^{3}(1-3 x)^{2}-\frac{1}{4} w(1-3 x)^{3}\right] d x \\
& =\int_{1}^{1 / 3}\left(\frac{1}{6} x-\frac{3}{2} x^{2}+\frac{3}{2} x^{3}-\frac{9}{2} x^{4}\right) d x \\
& \left.=\frac{1}{72^{2}} \pi^{4}-\frac{1}{2} x^{3}+\frac{11}{8} x^{4}-\frac{9}{10} x^{5}\right]_{0}^{1 / 3}=\frac{1}{108 \pi}
\end{aligned}
$$

25. $\iiint_{E} y^{2} z^{2} d V=\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \int_{0}^{1-y^{3}-z^{4}} y^{2} z^{2} d x d z d y=\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} y^{2} z^{2}\left(1-y^{2}-z^{2}\right) d z d y$
$=\int_{0}^{2+川} \int_{0}^{1}\left(r^{4} \cos ^{2} \theta\right)\left(r^{2} \sin ^{2} \theta\right)\left(1-r^{3}\right) r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{4} \sin ^{9} 2 \theta\left(r^{5}-r^{7}\right) d r d \theta$

26. $\iiint_{E} \pm d V=\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{01}^{2-y} z d o d x d y=\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(2-y) z d z d y=\int_{0}^{1} \frac{1}{2}(2-y)\left(1-y^{2}\right) d y$

$$
=\int_{0}^{1} \frac{1}{3}\left(2-y-2 y^{2}+y^{3}\right) d y=\frac{14}{24}
$$

27. $\iiint_{B} y z d V=\int_{-2}^{2} \int_{0}^{\sqrt{4-q^{2}}} \int_{0}^{y} y / f d x d y d x=\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \frac{1}{2} y^{3} d y d x=\int_{0}^{\pi} \int_{0}^{2} \frac{1}{D^{2}} r^{3}\left(\sin ^{3} \theta\right) r d r d \theta$

$$
=\frac{10}{5} \int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{15}{5}\left[-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right]_{11}^{\pi \prime}=\frac{8 d}{15}
$$

28. $\iiint_{H} z^{3} \sqrt{x^{2}-m y^{2}+z^{2}} d V=\int_{0}^{2+1} \int_{0}^{\pi / 2} \int_{0}^{1}\left(\rho^{3} \cos ^{3} \phi\right) \rho\left(\rho^{2} \sin \phi\right) d \rho d \phi d \theta$

$$
=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 2} \cos ^{3} \phi \sin \phi d \phi \int_{0}^{1} \rho^{6} d \rho=2 \pi\left[-\frac{1}{4} \cos ^{4} \phi\right]_{0}^{7 / 2}\left(\frac{1}{7}\right)=\frac{\pi}{141}
$$

29. $V=\int_{0}^{2} \int_{1}^{4}\left(x^{2}+4 y^{2}\right) d y d x=\int_{0}^{2}\left[x^{2} y+\frac{4}{3} y^{3}\right]_{y=1}^{v=1} d x=\int_{0}^{2}\left(3 x^{2}+84 y\right) d x=176$
30.

$$
\begin{aligned}
V & =\int_{11}^{7} \int_{u+1}^{4}-2 y \int_{0}^{x^{3}} u d x d x d y=\int_{0}^{1} \int_{u+1}^{4-2 y} x^{2} y d x d y \\
& =\int_{0}^{1} \frac{1}{4}\left[(4-2 y)^{3} y-(y+1)^{3} y\right] d y \\
& =\int_{0}^{1} 3\left(-y^{4}+5 y^{3}-11 y^{2}+7 y\right) d y=3\left(-\frac{1}{5}+\frac{5}{4}-\frac{11}{3}+\frac{7}{2}\right)=\frac{\pi}{20}
\end{aligned}
$$

31.

$$
\begin{aligned}
V & =\int_{0}^{2} \int_{0}^{y} \int_{0}^{(2-w) / 2} d z d x d y=\int_{0}^{2} \int_{0}^{y}\left(1-\frac{1}{2} y\right) d x d y \\
& =\int_{0}^{2}\left(y-\frac{y}{2} y^{2}\right) d y=\frac{2}{3}
\end{aligned}
$$

32. $\left.V=\int_{0}^{3 \pi} \int_{0}^{2} \int_{11}^{3-r \operatorname{tin} \theta} T d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2}\left(3 r-r^{3} \sin \theta\right) d r d \theta=\int_{0}^{2 \pi}\left[6-\frac{\theta}{3} \sin \theta\right] d \theta=6 \theta\right]_{0}^{2 \pi}+0=12 \pi$
33. Using the wedge above the plane $z=0$ and below the plane $z=$ mir and noting that we have the same volume for $m,<0$ as for $m>0$ (so use $m>0$), we have

$$
V=2 \int_{1}^{\alpha / 3} \int_{0}^{\sqrt{a^{2}-9 y^{3}}} m x d x d y=2 \int_{0}^{a / 3} \frac{1}{2} m\left(a^{2}-9 y^{2}\right) d y=m\left[a^{2} y-3 y^{3}\right]_{n}^{1 / 3}=m\left(\frac{1}{3} a^{3}-\frac{1}{0} a^{3}\right)=\frac{2}{9} m a^{3}
$$

34. The paraboloid and the half-cone intersect when $x^{2}+y^{2}=\sqrt{x^{2}+y^{2}}$, that is when $x^{2}+y^{2}=1$ or 0 . So

$$
V=\iint_{r^{2}+y^{2} \leq 1} \int_{x^{2}+y^{3}}^{\sqrt{x^{2}+y^{3}}} d z d A=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{\pi} r d x d r d \theta=\int_{0}^{3 \pi} \int_{0}^{1}\left(r^{2}-r^{3}\right) d r d \theta=\int_{0}^{2 \pi}\left(\frac{1}{3}-\frac{1}{4}\right) d \theta=\frac{1}{12}(2 \pi)=\frac{\pi}{6}
$$

35. (a) $m=\int_{0}^{1} \int_{0}^{7-y^{2}} y d x d y=\int_{0}^{1}\left(y-y^{3}\right) d y=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
(b) $M_{y}=\int_{0}^{1} \int_{0}^{1-u^{2}} x y d x d y=\int_{0}^{11} \frac{1}{2} y\left(1-y^{2}\right)^{2} d y=-\frac{1}{13}\left(1-y^{2}\right)_{]_{0}^{3}}^{1 .}=\frac{1}{12}$,

$$
M_{x}=\int_{0}^{1} \int_{0}^{11}-y^{4} y^{2} d x d y=\int_{0}^{1}\left(y^{2}-y^{4}\right) d y=\frac{a}{1 b} \text {. Hence }(\bar{x}, \bar{y})=\left(\frac{1}{3}, \frac{a}{1,8}\right) .
$$

(c) $I_{3}=\int_{0}^{1} f_{0}^{1-y^{2}} y^{3} d y d y=\int_{0}^{+}\left(y^{3}-y^{5}\right) d y=\frac{1}{12}$,
$\left.I_{I}=\int_{0}^{1} \int_{0}^{1-w^{2}} y x^{2} d x d y=\int_{0}^{1} \frac{1}{4} y\left(1-y^{2}\right)^{4} d y=-\frac{1}{24}\left(1-y^{2}\right)^{1}\right]_{0}^{1}=\frac{1}{24}$,

36. (a) $m=\frac{1}{4} \pi K o^{2}$ where K is constant,
$M_{y}=\iint_{x^{2} \| v^{3} \leq n^{2}} K \pi d A=K \int_{0}^{\pi / 2} \int_{0}^{a} r^{n} \cos \theta d r d \theta=\frac{1}{3} K a^{3} \int_{0}^{\pi / 2} \cos \theta d \theta=\frac{1}{3} a^{3} K$, and
$M_{i c}=K \int_{0}^{\pi / 2} \int_{0}^{\pi} r^{2} \sin \theta d r d \theta=\frac{1}{4} a^{3} K^{n} \quad$ [by symmetry $\left.M_{y}=M_{n}\right]$.
Hence the centroid is $(\bar{x}, \bar{y})=\left(\frac{4}{3 r} a, \frac{4}{3 \pi} a\right)$.
(b) $m=\int_{0}^{\pi / 2} \int_{10}^{+4} r^{4} \cos \theta \sin ^{2} \theta d r d \theta=\left[\frac{1}{8} \sin ^{3} \theta\right]_{0}^{\pi / 2}\left(\frac{1}{5} a^{5}\right)=\frac{1}{15} a^{5}$,

$$
\begin{aligned}
& M_{y}=\int_{0}^{\pi / 2} \int_{0}^{a} r^{5} \cos ^{2} \theta \sin ^{2} \theta d r d \theta=\frac{1}{8}\left[\theta-\frac{1}{4} \sin 40\right]_{0}^{\pi / 2}\left(\frac{1}{6} a^{6}\right)=\frac{1}{60} \pi a^{6}, \text { and } \\
& M_{\mathfrak{P}}=\int_{0}^{\pi / 2} \int_{0}^{a} r^{5} \cos \theta \sin ^{3} \theta d r d \theta=\left[\frac{1}{4} \sin ^{4} \theta\right]_{0}^{\pi / 2}\left(\frac{1}{a} a^{a}\right)=\frac{1}{14} a^{6} . \text { Hence }(\bar{x}, \bar{y})=\left(\frac{E}{32} \pi a, \frac{5}{9} a\right) .
\end{aligned}
$$

37. The equation of the cone will the suggested orientation is $(h-z)=\frac{h}{a} \sqrt{x^{2}+y^{2}}, 0 \leq z \leq h$. Then $V=\frac{1}{3} \pi a^{2} h$ is the volume of one trustum of a cone; by symmery $M_{y, x}=M_{m x}=0$; and

$$
\begin{aligned}
M_{i r y} & =\iint_{a^{2}+y^{2} \leq a^{2}} \int_{0}^{h-(1 / / a) \sqrt{\pi^{3}+\beta^{2}}} \pm d \pm d A=\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{(h / a)(a-r)} r \pm d x d r d \theta=\pi \int_{0}^{a} r \frac{h^{2}}{a^{3}}(a-r)^{2} d r \\
& =\frac{\pi h^{2}}{a^{2}} \int_{0}^{a}\left(a^{2} T-2 a r^{2}+r^{3}\right) d r^{r}=\frac{\pi h^{2}}{a^{3}}\left(\frac{a^{4}}{2}-\frac{2 a^{4}}{3}+\frac{a^{4}}{4}\right)=\frac{\pi h^{2} a^{2}}{1.2}
\end{aligned}
$$

Hence the centroicl is $(\bar{x}, \bar{y}, \bar{z})=\left(0,0, \frac{1}{1} h\right)$.
38. $f_{z}=\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{(h / a)(a-r)} r^{3} d z d r d \theta=2 \pi \int_{0}^{a} \frac{h}{a}\left(a r^{3}-r^{4}\right) d r=\frac{2 \pi h}{a}\left(\frac{a^{B}}{4}-\frac{a^{5}}{5}\right)=\frac{\pi a^{4} h}{10}$
39.

$$
\begin{aligned}
\int_{0}^{9} \int_{-\sqrt{9-i r^{2}}}^{\sqrt{\theta-x^{2}}}\left(x^{3}+x y^{2}\right) d y d x & =\int_{0}^{3} \int_{--\sqrt{9-x^{2}}}^{\sqrt{n-\pi^{2}}} x\left(x^{2}+y^{2}\right) d y d x \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{9}(r \cos \theta)\left(r^{2}\right) r d r d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \cos \theta d \theta \int_{0}^{3} r^{4} d r \\
& =[\sin \theta]_{-\pi / 2}^{\pi / 2}\left[\frac{1}{5} r^{5}\right]_{0}^{3}=2 \cdot \frac{1}{5}(243)=\frac{486}{5}=97.2
\end{aligned}
$$

40. The region of integration is the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 4, x \geq 0$.

$$
\begin{aligned}
& \int_{-\dot{\underline{2}}}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-\mathrm{i} \mathrm{r}^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d x d x d y \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\pi} \int_{0}^{2}(\rho \sin \phi \sin \theta)^{2}\left(\sqrt{\rho^{2}}\right) \rho^{2} \sin \phi d \rho d \phi d \theta=\int_{-\pi / 2}^{\pi / 2} \sin ^{2} \theta d \theta \int_{0}^{\pi} \sin ^{3} \phi d \phi \int_{0}^{2} \rho^{5} d \rho \\
& =\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right]_{-\pi / 2}^{\pi / 2}\left[-\frac{1}{3}\left(2+\sin ^{2} \phi\right) \cos \phi\right]_{0}^{\pi}\left[\frac{4}{f} \rho^{6}\right]_{0}^{2}=\left(\frac{\pi}{2}\right)\left(\frac{3}{3}+\frac{2}{9}\right)\left(\frac{42}{5}\right)=\frac{\operatorname{cis}_{9}^{9}}{9} \pi
\end{aligned}
$$

41. From the graph, it appears that $1 .-\pi^{2}=e^{7}$ at $x \approx-0.71$ and at $x=0$, with $7-x^{3}>e^{9}$ on $(-0.71,0)$. So the desired integral is

$$
\begin{aligned}
\iint_{D} y^{2} d A & \approx \int_{-0.77}^{0} \int_{n^{x}}^{1-x^{2}} y^{9} d y d x \\
& =\frac{1}{3} \int_{-0.71}^{0}\left[\left(1-\pi^{2}\right)^{3}-e^{3 x}\right] d x \\
& =\frac{1}{3}\left[x-x^{3}+\frac{3}{5} x^{5}-\frac{1}{7} x^{7}-\frac{1}{3} e^{3 \pi}\right]_{-0.71}^{0} \approx 0.0512
\end{aligned}
$$

42. Let the tetrahedron be called T. The front face of T is given by the plane $x+\frac{1}{2} y+\frac{1}{3} z=1$ or $x=3-3 x-\frac{3}{2} y$, which intersects the $x y$-plane in the line $y=2-2 n$. So the total mass is
$m=\iiint_{T} \rho(x, y, z) d V=\int_{0}^{1} \int_{0}^{2-3 x} \int_{0}^{4-3 x-3 y / 2}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x=\frac{7}{5}$. The center of mass is $(\bar{x}, \bar{y}, \bar{z})=\left(m^{-7} \iiint_{T} x \rho(x, y, z) d V, m^{-1} \iiint_{T} v \rho(x, y, z) d V, m^{-1} \iint J_{T} z \rho(x, y, z) d V\right)=\left(\frac{4}{21}, \frac{11}{21 .}, \frac{8}{7}\right)$.
43. (a) $\int(x, y)$ is a joint density function, so we know that $\iint_{\mathbb{R}^{2}} f(x, y) d A=$.. Since $f(x, y)=0$ outside the rectangle $[0,3] \times[0,2]$, we call say

$$
\begin{aligned}
\iint_{\mathbb{R}^{2}} f(x, y) d A & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x=\int_{0}^{3} \int_{0}^{2} C(x+y) d y d x \\
& =O \int_{0}^{3}\left[x y+\frac{1}{3} y^{2}\right]_{y=0}^{y=2} d x=C \int_{0}^{3}(2 x+2) d x=C\left[x^{2}+2 x\right]_{0}^{3}=1.50
\end{aligned}
$$

Then $15 C=1 \Rightarrow C=\frac{1}{10}$.
(b) $P(X \leq 2, Y \geq 1)=\int_{-\infty}^{2} \int_{1}^{\infty} f(x, y) d y d x=\int_{0}^{2} \int_{1}^{2} \frac{1}{15}(x, y) d y d x=\frac{1}{15} \int_{0}^{2}\left[x y+\frac{1}{2} y^{2}\right]_{y=1}^{y=2} d x$

$$
=\frac{1}{15} \int_{0}^{2}\left(x+\frac{3}{2}\right) d x=\frac{1}{16}\left[\frac{1}{2} x^{2}+\left.\frac{3}{2} x\right|_{0} ^{3}=\frac{1}{3}\right.
$$

(c) $P(X+Y \leq 1)=P((X, Y) \in D)$ where D is the triangular region shown in the figure. Thus

$$
\begin{aligned}
P(x+Y \leq 1) & =\iint_{D} f(x, y) d A=\int_{0}^{1} \int_{0}^{1+m s} \frac{1}{1 E}(x+y) d y d x \\
& =\frac{1}{15} \int_{0}^{1}\left[x y+\frac{1}{2} y^{7}\right]_{u=0}^{y=1-x} d x \\
& =\frac{1}{15} \int_{0}^{1}\left[x(1-x)+\frac{1}{2}(1-x)^{\frac{1}{2}}\right] d x \\
& =\frac{1}{30} \int_{0}^{1}\left(1-x^{2}\right) d x=\frac{1}{30}\left[x-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{45}
\end{aligned}
$$

44. Each lamp has exponential density turnction

$$
f(t)= \begin{cases}0 & \text { if } t<0 \\ \frac{2}{800} e^{-t / 80 p} & \text { if } t \geq 0\end{cases}
$$

If X, Y, and Z are the lifetimes of the individual bulbs, then X, Y, and Z are independent, so the joint density finction is the produer of the individual density functions:

$$
f(x, y, z)= \begin{cases}\frac{1}{800^{3}} e^{-(i x+y+x) / 800} & \text { if } x \geq 0, y \geq 0, z \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

The probability that all three bullos fail within a total of 1.000 hours is $P(X+Y+Z \leq 1000$), or equivalently $P((X, Y, Z) \in E)$ where E is the solid region in the first oetant bounded by the coordinate planes and the plane $s+y+z=1.000$. The plane $x+y+z=1.000$ meets the $x y$-plane in the line $x+y=1000$, so we have

$$
\begin{aligned}
& =\frac{1}{x^{\left(100^{T}\right.}} \int_{0}^{1000} \int_{0}^{1000-i c}-800\left[e^{-(T-y+u+x) / 800}\right]_{F=0}^{x=i \mid 000-x-y} d y d x \\
& =\frac{-1}{800^{2}} \int_{0}^{1000} \int_{0}^{1000-5}\left[t^{-5 / 4}-e^{-(x+7 \omega) / 800}\right] d y d x \\
& =\frac{-1}{800^{2}} \int_{0}^{1000}\left[e^{-5 / 4} y+800 e^{-(\Phi-w) / 400}\right]_{\nu=0}^{y=10100-x} d x \\
& =\frac{-1}{800^{2}} \int_{0}^{19000}\left[e^{-8 / 4}(1.800-x)-800 e^{-x / 8000}\right] d x \\
& =\frac{-2}{600} r\left[-\frac{1}{2} e^{-5 / 4}(1800-x)^{2}+800^{2} e^{-\pi \pi / 800}\right]_{0}^{1000} \\
& =\frac{-1}{800^{3}}\left[-\frac{1}{4} e^{-\pi / 4}(800)^{2}+800^{2} e^{-5 / 4}+\frac{1}{2} e^{-5 / 4}(1.800)^{2}-800^{4}\right] \\
& =1-\frac{17}{87} e^{-5 / 4} \approx 0.1315
\end{aligned}
$$

45.

46.

$\int_{0}^{2} \int_{0}^{y^{3}} \int_{0}^{y^{2}} f(x, y, z) d t d y d y=\iiint_{E} f(x, y, z) d V$ where $E=\left\{(x, y, z) \mid 0 \leq y \leq 2,0 \leq x \leq y^{3}, 0 \leq z \leq y^{\prime \prime}\right\}$.
If $D_{1}, D_{2,}$, and D_{3} are the projections of E on the $x y^{-}$, $y \pm$-, and sx-planes, then
$D_{1}=\left\{(x, y) \mid 0 \leq y \leq 2,0 \leq x \leq y^{4}\right\}=\{(x, y) \mid 0 \leq x \leq 8, \sqrt[3]{x} \leq y \leq 2\}$,
$D_{2}=\{(y, z) \mid 0 \leq x \leq 4, \sqrt{z} \leq y \leq 2\}=\left\{(y, z) \mid 0 \leq y \leq 2,0 \leq z \leq y^{2}\right\}, D_{n}=\{(x, z) \mid 0 \leq x \leq 8,0 \leq z \leq 4\}$.
Therefore we have

$$
\begin{aligned}
& \int_{0}^{a} \int_{0}^{u^{3}} \int_{0}^{w^{3}} f(x, y, z) d x d x d y=\int_{0}^{B} \int_{\sqrt[3]{x}}^{2} \int_{0}^{u^{3}} f(x, y, z) d z d y d x=\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{y^{y}} f(x, y, z) d x d y d z \\
& =\int_{0}^{2} \int_{0}^{y^{2}} \int_{0}^{y^{3}} f(u, y, z) d x d z d y \\
& =\int_{0}^{8} \int_{0}^{i x^{9 / 3}} \int_{\sqrt[3]{\pi}}^{2} f(x, y, z) d y d s d x+\int_{0}^{B} \int_{x^{3 / a}}^{4} \int_{\sqrt{z}}^{2} f(x, y, z) d y d z d x \\
& =\int_{0}^{4} \int_{0}^{z^{3 / 2}} \int_{\sqrt{x}}^{2} f(x, y, z) d y d x d z+\int_{0}^{4} \int_{E^{3 / 2}}^{\underline{3}} \int_{\sqrt{2} / \sqrt{2}}^{2} f(x, y, z) d y d x d x
\end{aligned}
$$

47. Since $u=x-y$ and $y=x+y, x=\frac{2}{4}(u+v)$ and $y=\frac{1}{2}(v-u)$.

Thus $\frac{b(x, y)}{\partial(u, v)}=\left|\begin{array}{rr}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right|=\frac{1}{2}$ and $\iint_{R} \frac{x-y}{x+y} d A=\int_{2}^{4} \int_{-2}^{0} \frac{u}{v}\left(\frac{1}{2}\right) d u d v=-\int_{2}^{4} \frac{d v}{v}=-\ln 2$.
48. $\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{ccc}2 u & 0 & 0 \\ 0 & 2 v & 0 \\ 0 & 0 & 2 w\end{array}\right|=8 u v w$, so

$$
\begin{aligned}
& V=\iiint_{E} d V=\int_{0}^{1} \int_{0}^{1-u} \int_{0}^{1-1+-u} \overline{8} u v w d w d u d u=\int_{0}^{1} \int_{0}^{1-\dagger+} 4 u v(1-u-v)^{2} d u \\
& =\int_{0}^{1} \int_{0}^{1-u^{4}}\left[4 u(1-u)^{2} v-8 u(1-u) v^{2}+4 u v^{3}\right] d u d u \\
& =\int_{0}^{1}\left[2 u(1 .-u)^{4}-\frac{8}{3} u(1-u)^{d}+u(1-u)^{4}\right] d u=\int_{0}^{1} \frac{1}{3} u(1-u)^{4} d u \\
& =\int_{0}^{1} \frac{1}{3}\left[(1-u)^{u}-(1-u)^{5}\right] d u=\frac{1}{3}\left[-\frac{1}{5}(1-u)^{5}+\frac{1}{6}(1-u)^{\text { }}\right]_{0}^{1}=\frac{1}{3}\left(-\frac{1}{6}+\frac{1}{6}\right)=\frac{1}{90}
\end{aligned}
$$

49. Let $u=y-x$ and $v=y+x$ so $x=y-u=(v-x)-u \quad \Rightarrow \quad x=\frac{1}{2}(v-u)$ and $y=v-\frac{1}{2}(u-u)=\frac{1}{2}(v+u)$.
$\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial u} \frac{\partial y}{\partial u}\right|=\left|-\frac{1}{2}\left(\frac{1}{2}\right)-\frac{1}{2}\left(\frac{1}{2}\right)\right|=\left|-\frac{1}{2}\right|=\frac{1}{2} . R$ is the image under this transformation of the square with vertices $(u, v)=(0,0),(-2,0),(0,2)$, and $(-2,2)$. So

$$
\iint_{\pi} x y d A=\int_{0}^{2} \int_{\sim 2}^{0} \frac{v^{3}-u^{2}}{4}\left(\frac{1}{2}\right) d u d v=\frac{1}{8} \int_{0}^{2}\left[v^{2} u-\frac{1}{3} u^{3}\right]_{u \rightarrow-\frac{2}{3}}^{u=0} d v=\frac{1}{\beta} \int_{0}^{2}\left(2 v^{2}-\frac{8}{3}\right) d u=\frac{1}{8}\left[\frac{2}{3} v^{3}-\frac{8}{3} v\right]_{0}^{2}=0
$$

This result could have been anticipated by symmerry, since the integrand is an odd function of y and R is symmetric about the x-axis.
50. By the Extreme Value Theorem (15.7 .8 [ET 14.7.8]], f has an absolute minimum value m and an absolute maximum value M in D. Then by Properly 16.3 .1$][$ ET 15.3 .11$]$, $\operatorname{ma} A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)$. Dividing through by the posilive number $A(D)$, we get $m \leq \frac{1}{A(D)} \iint_{D} f(x, y) d A \leq M$. This says that the average value of f over D Lies between m and M. Bur f is continuous on D and takes on the values m and M, und so by the Intermediate Value 'Theorem must take on all values between m and M. Specifically, there exists a point $\left(x_{0}, y_{0}\right)$ in D such that $f\left(x_{\mathrm{n}}, y_{0}\right)=\frac{1}{A(D)} \iint_{D} f(x, y) d A$ or equivalently $\iint_{D} f(x, y) d A=f\left(x_{0}, y_{0}\right) A(D)$.
51. For each r such that D_{r} lies within the domain, $A\left(D_{r}\right)=\pi r^{2}$, and by the Mean Value Theorem for Double Integrals there exists $\left(x_{r}, y_{r}\right)$ in D_{r} such that $f\left(x_{r}, y_{r}\right)=\frac{1}{\pi r^{3}} \iint_{D_{r}} f(x, y) d A$. But $\lim _{r \rightarrow 0^{+}}\left(x_{r}, y_{r}\right)=(a, b)$,
so $\lim _{r \rightarrow 0-1} \frac{1}{\pi r^{4}} \iint_{D_{r}} f(x, y) d A=\lim _{r \rightarrow 0 \mid+} f\left(x_{r}, y_{r}\right)=f(a, b)$ by the continuity of f.
52. (a) $\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{n / M}} d A=\int_{0}^{2 \pi} \int_{T}^{\pi} \frac{1}{\left(t^{2}\right)^{\pi / 2}} t d t d \theta=2 \pi \int_{T}^{R} t^{2-\pi} d t$

$$
= \begin{cases}\left.\frac{2 \pi}{2-n} t^{2-n}\right]_{r}^{R}=\frac{2 \pi}{2-n}\left(R^{2-n}-r^{3-n_{2}}\right) & \text { if } n \neq 2 \\ 2 \pi \ln (R / r) & \text { if } n=2\end{cases}
$$

(b) The integral in part (n) has a limit as $r \rightarrow 0^{+1}$ for all values of n such that $2-n>0 \Leftrightarrow n<2$.
(c) $\iiint_{E} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}} d V=\int_{\pi}^{H} \int_{n}^{\pi} \int_{0}^{2 \pi} \frac{1}{\left(\rho^{2}\right)^{\pi / 2}} \rho^{2} \sin \phi d \theta d \phi d \rho=2 \pi \int_{\Gamma}^{R} \int_{0}^{\pi /} \rho^{2-n} \sin \phi d \phi d \rho$

$$
= \begin{cases}\left.\frac{4 \pi}{3-n} \rho^{3-n}\right]_{r}^{R}=\frac{4 \pi}{3-n}\left(R^{3-n}-r^{3-n}\right) & \text { if } n \neq 3 \\ 4 \pi \ln (R / r) & \text { if } n=3\end{cases}
$$

(d) As $r \rightarrow 0^{+}$, the above integral has a limit, provided that $3-n>0 \Leftrightarrow n<3$.

PROBLEMS PLUS

1.

Let $R=\bigcup_{i=1}^{\sqrt{k}} R_{i}$, where

$$
\begin{aligned}
& R_{i}=\{(x, y) \mid x+y \geq i+2, x+y<i+3,1 \leq x \leq 3,2 \leq y \leq 5\} . \\
& \iint_{\dot{i}} \| x+y \rrbracket d A=\sum_{i=1}^{s} \iint_{R_{i}}\left[x+y\left\|d A=\sum_{i=1}^{B} \llbracket \pi+y\right\| \iint_{R_{t}} d A\right. \text {, since } \\
& \|x+y\|=\text { constant }=i+2 \text { for }(x, y) \in R_{i} \text {. Therefore } \\
& \iint_{R} \|\left\{+y^{\prime} \| d A=\sum_{i=1}^{k}(i+2)\left[A\left(R_{t}\right)\right]\right. \\
& =3 A\left(R_{11}\right)+4 A\left(R_{4}\right)+5 A\left(R_{\mathrm{a}}\right)+6 A\left(R_{\mathrm{i}}\right)+7 A\left(R_{5}\right) \\
& =3\left(\frac{1}{2}\right)+4\left(\frac{4}{2}\right)+5(2)+6\left(\frac{3}{9}\right)+7\left(\frac{1}{2}\right)=30
\end{aligned}
$$

2.

Let $R=\{(x, y) \mid 0 \leq x, y \leq 1\}$, For $x, y \in R_{r,} \max \left\{x^{2}, y^{2}\right\}=x^{2}$ if $a \geq y$,
and $\max \left\{x^{2}, y^{2}\right\}=y^{2}$ if: $\leq y$. Therefore we divide R into two regions:
$R=R_{1} \sqcup R_{2}$, where $R_{1}=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x\}$ and
$R_{2}=\{(\mu, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\}$. Now $\max \left\{x^{2}, y^{2}\right\}=x^{2}$ for
$(x, y) \in R_{1}$, and $\max \left\{x^{2}, y^{2}\right\}=y^{2}$ for $(x, y) \in R_{2} \Rightarrow$
$\int_{0}^{1} \int_{0}^{1} e^{\max x}\left\{x^{n}, y^{\prime \prime}\right\} d y d x=\iint_{R} e^{\operatorname{manx}\left\{x^{2}, y^{2}\right\}} d A=\iint_{R_{1}}^{\operatorname{manx}\left\{x^{2}, y^{2}\right\}} d A+\iint_{R_{9}} t^{\max \left\{x^{4}, y^{2}\right\}} d A$

$$
=\int_{01}^{1} \int_{01}^{2 x} e^{x^{3}} d y d x+\int_{0}^{1} \int_{0}^{y} e^{y^{3}} d x d y=\int_{0}^{1} \pi e^{x^{2}} d x+\int_{0}^{1} y e^{y^{y}} d y=e^{x^{2}} \int_{0}^{1}=e-1
$$

3. $f_{\mathrm{uvv}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{1-0} \int_{0}^{1}\left[\int_{x}^{1} \cos \left(t^{2}\right) d t\right] d x$

$$
\begin{aligned}
& =\int_{0}^{1} \int_{x}^{11} \cos \left(t^{2}\right) d t d x=\int_{0}^{t} \int_{0}^{t} \cos \left(t^{2}\right) d x d t \quad \text { [othanging the order of integration] } \\
& \left.=\int_{0}^{1} t \cos \left(t^{2}\right) d t=\frac{1}{2} \sin \left(t^{2}\right)\right]_{0}^{1}=\frac{1}{2} \sin 1
\end{aligned}
$$

4. Let $u=\mathbf{a} \cdot \mathbf{r}, v=\mathbf{b} \cdot \mathbf{r}, w=\mathbf{c} \cdot \mathbf{r}$, where $\mathbf{a}=\left\langle a_{4}, a_{2}, a_{3}\right\rangle, \mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle, \mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$. Under this change of variables, E corresponds to the rectangular box $0 \leq u \leq \alpha, 0 \leq v \leq \beta, 0 \leq w \leq \gamma$. So, by Formula 16.9.13 [ET 15.9.13],
$\int_{0}^{\gamma} \int_{0}^{\beta} \int_{0}^{c x} u v w d u d v d w=\iiint_{E}(\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r})(\mathbf{c} \cdot \mathbf{r})\left|\frac{\partial(u, v, w)}{\partial(x, y, z)}\right| d V \cdot$ Bur

$$
\begin{aligned}
\left|\frac{\partial(u, v, w)}{\partial(x, y, z)}\right|=\left|\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\right|=|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}| & \Rightarrow \\
\iiint_{E}(\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r})(\mathbf{c} \cdot \mathbf{r}) d V & =\frac{1}{|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|} \int_{0}^{\gamma} \int_{0}^{\beta} \int_{0}^{a} u \nu w d u d v d w \\
& =\frac{1}{|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|}\left(\frac{\alpha^{2}}{2}\right)\left(\frac{\beta^{2}}{2}\right)\left(\frac{\alpha^{2}}{2}\right)=\frac{(a, \beta \gamma)^{2}}{8|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|}
\end{aligned}
$$

5. Since $|x y| \leqslant 1$, excepl at $(i, 1)$, the formula for the sum of a geometric series gives $\frac{1}{1-x y}=\sum_{n=0}^{\infty}(x y)^{n}$, so

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-n y} d x d y & =\int_{0}^{1} \int_{0}^{1} \sum_{n=0}^{\infty}(x y)^{n} d x d y=\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1}(x y)^{n} d x d y=\sum_{n=11}^{\infty}\left[\int_{0}^{1} x^{n} d x\right]\left[\int_{0}^{1} y^{n} d y\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{n_{1}+1} \cdot \frac{1}{n_{n}+1}=\sum_{n=0}^{\infty} \frac{1}{\left(n+1, l^{1}\right.}=\frac{1}{T^{n}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\sum_{n=\frac{1}{\infty}}^{\infty} \frac{1}{n_{n}^{2}}
\end{aligned}
$$

6. Let in $=\frac{u-v}{\sqrt{2}}$ and $y=\frac{u+v}{\sqrt{2}}$. We know the region of integration in the $x y$-plane, so to find its inage in the ur-plane we get u and u in terms of x and y, and then use the methods of Section 16.9 [ET 15.9]. $x+y=\frac{u-v}{\sqrt{2}}+\frac{u+v}{\sqrt{2}}=\sqrt{2} u$, sо $u=\frac{x+y}{\sqrt{2}}$, and similarly $v=\frac{y-x}{\sqrt{2}}, S_{7}$ is given by $y=0,0 \leq x \leq$ l. so from the equations derived above, the image of S_{1} is $S_{1}^{\prime}: u=\frac{1}{\sqrt{2}} x_{2} v=-\frac{1}{\sqrt{2}} x, 0 \leq x \leq 1$, that is, $v=-4,0 \leq u \leq \frac{1}{\sqrt{2}}$. Similarly, the image of S_{3} is $S_{2}^{\prime} ; v=u-\sqrt{2}$, $\frac{1}{\sqrt{2}} \leq u \leq \sqrt{2}$, the image of S_{3} is $S_{3}^{\prime}: v=\sqrt{2}-u, \frac{1}{\sqrt{2}} \leq u \leq \sqrt{2}$, and the image of S_{4} is $S_{1}^{\prime}: v-u, 0 \leq u \leq \frac{1}{\sqrt{2}}$.

The lacobian of the transfornation is $\frac{\partial(x, y)}{\partial(u, y)}=\left|\begin{array}{ll}\partial x / \partial u & \partial x / \partial v \\ \partial y / \partial u & \partial y / \partial v\end{array}\right|=\left|\begin{array}{cc}\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right|=1$. From the diagram,
we see that we must evaluate two integrals: one over the region $\left\{\left(u_{r}, v\right) \left\lvert\, 0 \leq u \leq \frac{1}{\sqrt{2}}\right.,-u \leq u \leq u\right\}$ and the other over $\left\{(u, v) \left\lvert\, \frac{1}{\sqrt{2}} \leq u \leq \sqrt{2}\right.,-\sqrt{2}+u \leq v \leq \sqrt{2}-u\right\}$. So

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-x y}=\int_{0}^{\sqrt{4} / 2} \int_{-u}^{1 u} \frac{d u d u}{1-\left[\frac{1}{\sqrt{2}}(u+v)\right]\left[\frac{1}{\sqrt{2}}(u-v)\right]}+\int_{\sqrt{2} / 2}^{\sqrt{2}} \int_{-\sqrt{2}+u}^{\sqrt{2}-u} \overline{1-\left[\frac{1}{\sqrt{2}}(u+v)\right]\left[\frac{1}{\sqrt{2}}(u-v)\right]} \\
& =\int_{0}^{\sqrt{2} / 2} \int_{-4}^{4} \frac{2 d u d u}{2-u^{2}+v^{2}}+\int_{\sqrt{2} / 2}^{\sqrt{4}} \int_{-\sqrt{2}+u}^{\sqrt{2}-u} \frac{2 d u d u}{2-u^{2}+v^{2}} \\
& =2\left[\int_{0}^{\sqrt{2} / 2} \frac{1}{\sqrt{2-u^{2}}}\left[\arctan \frac{u}{\sqrt{2-u^{2}}}\right]_{-u}^{u} d u+\int_{\sqrt{2} / 2}^{\sqrt{2}} \frac{1}{\sqrt{2-u^{2}}}\left[\arctan \frac{v}{\sqrt{2-u^{2}}}\right]_{-\sqrt{2}-v_{u}}^{\sqrt{2}-u} d u\right] \\
& =4\left[\int_{0}^{\sqrt{2} / 2} \frac{1}{\sqrt{2-u^{2}}} \operatorname{arctian} \frac{u}{\sqrt{2-u^{2^{2}}}} d u+\int_{\sqrt{1 / 2} / 2}^{\sqrt{2}} \frac{1}{\sqrt{2-u^{2}}} \arctan \frac{\sqrt{2}-u}{\sqrt{2-u^{2}}} d u\right]
\end{aligned}
$$

Now let $u=\sqrt{2} \sin \theta$, so $d u=\sqrt{2} \cos \theta d \theta$ and the limits change to 0 and $\frac{\pi}{6}$ (in the first integral) and $\frac{4}{6}$ and $\frac{\pi}{2}$ (in the
second integral). Continuing:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\pi} \frac{d x d y}{1-x y}= {\left[\int_{0}^{\pi / 6} \frac{1}{\sqrt{2-2 \sin ^{2} \theta}} \arctan \left(\frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}}\right)(\sqrt{2} \cos \theta d \theta)\right.} \\
& \quad+\int_{\pi / 6}^{\pi / 2} \frac{1}{\sqrt{2-2} \sin ^{2} \theta} \\
&\left.\arctan \left(\frac{\sqrt{2}-\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}}\right)(\sqrt{2} \cos \theta d \theta)\right] \\
&= 4\left[\int_{0}^{\pi / \theta} \frac{\sqrt{2} \cos \theta}{\sqrt{2} \cos \theta} \arctan \left(\frac{\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta}\right) d \theta+\int_{\pi / \theta}^{\pi / 2} \frac{\sqrt{2} \cos \theta}{\sqrt{2} \cos \theta} \arctan \left(\frac{\sqrt{2}(1-\sin \theta)}{\sqrt{2} \cos \theta}\right) d \theta\right] \\
&= 4\left[\int_{0}^{\pi / \theta} \arctan (\tan \theta) d \theta+\int_{\pi / \theta}^{\pi / 2} \arctan \left(\frac{1-\sin \theta}{\cos \theta}\right) d \theta\right]
\end{aligned}
$$

But (following the hint)

$$
\begin{aligned}
\frac{1-\sin \theta}{\cos \theta} & \left.=\frac{1-\cos \left(\frac{\pi}{2}-\theta\right)}{\sin \left(\frac{\pi}{2}-\theta\right)}=\frac{1-\left[1-2 \sin ^{2}\left(\frac{1}{2}\left(\frac{\pi}{2}-\theta\right)\right)\right]}{2 \sin \left(\frac{1}{2}\left(\frac{\pi}{2}-\theta\right)\right) \cos \left(\frac{1}{3}\left(\frac{\pi}{2}-\theta\right)\right)} \quad \text { [halffungle formulat }\right] \\
& =\frac{2 \sin ^{2}\left(\frac{1}{2}\left(\frac{\pi}{3}-\theta\right)\right.}{2 \sin \left(\frac{1}{2}\left(\frac{\pi}{2}-\theta\right)\right) \cos \left(\frac{1}{1}\left(\frac{\pi}{2}-\theta\right)\right)}=\tan \left(\frac{1}{2}\left(\frac{\pi}{2}-\theta\right)\right)
\end{aligned}
$$

Continuing:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{1-\pi y} & =4\left[\int_{0}^{\pi / \theta} \arctan (\tan \theta) d \theta+\int_{\pi / 6}^{\pi / 2} \arctan \left(\tan \left(\frac{1}{2}\left(\frac{\pi}{2}-\theta\right)\right)\right) d \theta\right] \\
& =4\left[\int_{0}^{\pi / 6} \theta d \theta+\int_{\pi / 6}^{\pi / 2}\left[\frac{1}{2}\left(\frac{\pi}{2}-\theta\right)\right] d \theta\right]=4\left(\left[\frac{\theta^{3}}{2}\right]_{0}^{\pi / \theta}+\left[\frac{\pi \theta}{4}-\frac{\theta^{2}}{4}\right]_{\pi / 6}^{\pi / \pi}\right)=4\left(\frac{3 \pi^{2}}{72}\right)=\frac{\pi^{2}}{6}
\end{aligned}
$$

7. (a) Since \mid ayz $\mid<1$ except on $(1,1,1)$, the fonmula tor the sum of a geomelic series gives $\frac{I}{1-x y z}=\sum_{n=0}^{\infty}(x y z)^{n}$, so

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y y z} d x d y d z & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sum_{n=0}^{\infty}(x y z)^{n} d x d y d x=\sum_{n+=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x y z)^{n} d y d y d x \\
& =\sum_{n=0}^{\infty}\left[\int_{0}^{1} x^{n} d x\right]\left[\int_{0}^{4} y^{n} d y\right]\left[\int_{0}^{1} z^{n} d x\right]=\sum_{n=0}^{\infty} \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \\
& =\sum_{n=0}^{\infty} \frac{1}{(n-1)^{3}}=\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{3}}
\end{aligned}
$$

(b) Since $|-x y z|<1$, except at $(1, I, 7)$, the formula for the sum of a geometric series gives $\frac{1}{1+x y^{z}}=\sum_{n_{1}=0}^{\infty}(-x y z)^{n}$, so

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1+x y z} d x d y d z=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1+x y z} \sum_{n=0}^{\infty}(-x y z)^{n} d x d y d z=\sum_{n=0}^{\infty} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(-x y z)^{n} d x d y d z \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left[\int_{0}^{1} x^{n} d r\right]\left[\int_{n}^{1} y^{n} d y\right]\left[\int_{0}^{7} z^{n} d z\right]=\sum_{T_{h}=0}^{\infty}(-1)^{n} \frac{1}{n+1} \cdot \frac{1}{n+1} \cdot \frac{1}{n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)^{3}}=\frac{1}{1^{3}}-\frac{1}{2^{3}}+\frac{1}{3^{3}}-\cdots=\sum_{n=0}^{m} \frac{(-1)^{n-1}}{n^{3}}
\end{aligned}
$$

To cvaluate this sum, we first write out a few terms; $s=1-\frac{1}{2^{3}}+\frac{1}{3^{9}}-\frac{1}{4^{3}}+\frac{1}{5^{5}}=\frac{1}{6^{3}} \approx 0.8998$. Notice that $a_{7}=\frac{1}{7^{3}}<0.003$. By the Altemating Series Estimation Theorem from Section 12.5 [ET 1].5], we have $\left|s-s_{6}\right| \leq 47<0.003$. Thit error of 0.003 will not affect the second deciral place, so we have $a \approx 0.90$
8. $\int_{0}^{\infty} \frac{\arctan \pi x-\arctan x}{x} d x=\int_{0}^{\infty}\left[\frac{\arctan y x}{x}\right]_{y=1}^{y=\pi} d x=\int_{0}^{+\infty} \int_{1}^{\pi} \frac{1}{1+y^{2} x^{2}} d y d x=\int_{1}^{\pi} \int_{0}^{\infty} \frac{1}{1+y^{2} x^{2}} d x d y$

$$
=\int_{1}^{\pi} \lim _{t \rightarrow \infty}\left[\frac{\arctan y x}{y}\right]_{x=0}^{\pi=t} d y=\int_{1}^{\pi} \frac{\pi}{2 y} d y=\frac{\pi}{2}[\ln y]_{1}^{\pi}=\frac{\pi}{2} \ln \pi
$$

9. (a) $x=r \cos \theta, y=r \sin \theta, z=$. Then $\frac{\partial u}{\partial r}=\frac{\partial u}{\partial r} \frac{\partial z}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial r}=\frac{\partial u}{\partial x} \cos \theta+\frac{\partial u}{\partial y} \sin \theta$ and

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial r^{2}} & =\cos \theta\left[\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial x}{\partial r}+\frac{\partial^{2} u}{\partial y \partial x} \frac{\partial y}{\partial r}+\frac{\partial^{2} u}{\partial z \partial x} \frac{\partial z}{\partial r}\right]+\sin \theta\left[\frac{\partial^{2} u}{\partial y^{3}} \frac{\partial y}{\partial r}+\frac{\partial^{2} u}{\partial x \partial y} \frac{\partial x}{\partial r}+\frac{\partial^{2} u}{\partial z} \frac{\partial z}{\partial y} \frac{\partial z}{\partial r}\right] \\
& =\frac{\partial^{2} u}{\partial x^{2}} \cos ^{2} \theta+\frac{\partial^{2} u}{\partial y^{2}} \sin ^{2} \theta+2 \frac{\partial^{2} u}{\partial y \partial x} \cos \theta \sin \theta
\end{aligned}
$$

Similarly $\frac{\partial u}{\partial \theta}=-\frac{\partial u}{\partial x} r \sin \theta+\frac{\partial u}{\partial y} r \cos \theta$ and

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial \theta^{2}}=\frac{\partial^{2} u}{\partial \alpha^{2}} r^{2} \sin ^{2} \theta+\frac{\partial^{2} u}{\partial y^{2}} r^{2} \cos ^{2} \theta-2 \frac{\partial^{2} u}{\partial y \partial x} r^{2} \sin \theta \cos \theta-\frac{\partial u}{\partial x} r \cos \theta-\frac{\partial u}{\partial y} r \sin \theta . \text { So } \\
& \quad \partial^{2} u \quad 1 \quad \partial u, 1 \frac{\partial^{2} u}{} \partial^{2} \ldots
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \cos ^{2} \theta+\frac{\partial^{2} u}{\partial y^{2}} \sin ^{2} \theta+2 \frac{\partial \partial^{2} u}{\partial y \partial x} \cos \theta \sin \theta+\frac{\partial u}{\partial x} \frac{\cos \theta}{r}+\frac{\partial u}{\partial y} \frac{\sin \theta}{r}
\end{gathered}
$$

$$
+\frac{\partial^{2} u}{\partial x^{2}} \sin ^{2} \theta+\frac{\partial^{2} u}{\partial y^{2}} \cos ^{2} \theta-2 \frac{\partial^{2} u}{\partial y \partial x} \sin \theta \cos \theta
$$

$$
=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial x^{2}} \frac{\cos \theta}{\partial z^{2}}-\frac{\partial u}{\partial y} \frac{\sin \theta}{r}+\frac{\partial^{2} u}{\partial z^{2}}
$$

(b) $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$. Then
$\frac{\partial u}{\partial \rho}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \rho}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \rho}+\frac{\partial_{u}}{\partial z} \frac{\partial z}{\partial \rho}=\frac{\partial u}{\partial x} \sin \phi \cos \theta+\frac{\partial u}{\partial y} \sin \phi \sin \theta+\frac{\partial u}{\partial z} \cos \phi$, and

Similarly $\frac{\partial_{u}}{\partial \phi}=\frac{\partial u}{\partial x} \rho \cos \phi \cos \theta+\frac{\partial u}{\partial y} \rho \cos \phi \sin \theta-\frac{\partial u}{\partial z} \rho \sin \phi_{\text {a }}$ and

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial \phi^{2}}=2 \frac{\partial^{2} u}{\partial y \partial x} \rho^{2} \cos ^{2} \phi \sin \theta \cos \theta-2 \frac{\partial^{2} u}{\partial x \partial z} \rho^{2} \sin \phi \cos \phi \cos \theta \\
& \quad-2 \frac{\partial^{2} u}{\partial y \partial z} \rho^{2} \sin \phi \cos \phi \sin \theta+\frac{\partial^{2} u}{\partial x^{2}} \rho^{2} \cos ^{2} \phi \cos ^{2} \theta+\frac{\partial^{7} u}{\partial y^{2}} \rho^{7} \cos ^{2} \phi \sin ^{2} \theta \\
& \quad+\frac{\partial^{2} u}{\partial z^{2}} \rho^{2} \sin ^{2} \phi-\frac{\partial u}{\partial x} \rho \sin \phi \cos \theta-\frac{\partial u}{\partial \ddot{y}} \rho \sin \phi \sin \theta-\frac{\partial u}{\partial z} \rho \cos \phi
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial \rho^{2}}=\sin \phi \cos \theta\left[\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial w}{\partial \rho}+\frac{\partial^{2} u}{\partial y \partial x} \frac{\partial y}{\partial \rho}+\frac{\partial^{2} u}{\partial z \partial z} \frac{\partial z}{\partial \rho}\right] \\
& +\sin \phi \sin \theta\left[\frac{\partial^{2} u}{\partial y^{2}} \frac{\partial y}{\partial \rho}+\frac{\partial^{2} u}{\partial x \partial y} \frac{\partial x}{\partial \rho}+\frac{\partial^{2} u}{\partial z \partial y} \frac{\partial z}{\partial \rho}\right] \\
& +\cos \phi\left[\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial z}{\partial \rho}+\frac{\partial^{2} u}{\partial x} \frac{\partial_{x} z}{\partial \rho}+\frac{\partial^{2} u}{\partial y} \frac{\partial y}{\partial z} \frac{\partial y}{\partial \rho}\right] \\
& =2 \frac{\partial^{2} u}{\partial y \partial \partial^{2}} \sin ^{2} \phi \sin \theta \cos \theta+2 \frac{\partial^{2} u}{\partial z \partial_{x}} \sin \phi \cos \phi \cos \theta+2 \frac{\partial^{2} u}{\partial y \partial z} \sin \phi \cos \phi \sin \theta \\
& +\frac{\partial^{2} u}{\partial x^{2}} \sin ^{3} \phi \cos ^{2} \theta+\frac{\partial^{2} u}{\partial y^{2}} \sin ^{2} \phi \sin ^{2} \theta+\frac{\partial^{2} u}{\partial x^{2}} \cos ^{2} \phi
\end{aligned}
$$

$$
\begin{aligned}
& \text { And } \frac{\partial u}{\partial \theta}=-\frac{\partial u}{\partial x} \rho \sin \phi \sin \theta+\frac{\partial u}{\partial y} \rho \sin \phi \cos \theta_{\mathrm{s}} \text { witilo } \\
& \qquad \begin{aligned}
\frac{\partial^{2} u}{\partial \theta^{2}}=-2 \frac{\partial^{2} u}{\partial y} \partial^{2} x & \rho^{2} \sin ^{2} \phi \cos \theta \sin \theta+\frac{\partial^{2} u}{\partial x^{2}} \rho^{\prime \prime} \sin ^{2} \phi \sin ^{2} \theta \\
& +\frac{\partial^{2} u}{\partial y^{3}} \rho^{2} \sin ^{2} \phi \cos ^{2} \theta-\frac{\partial u}{\partial x} \rho \sin \phi \cos \theta-\frac{\partial u}{\partial y} \mu \sin \phi \sin \theta
\end{aligned}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial \rho^{2}}+\frac{2}{\rho} \frac{\partial u}{\partial \rho}+\frac{\cot \phi}{\rho^{2}} \frac{\partial u}{\partial \phi}+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}} \\
& =\frac{\partial^{2} u}{\partial x^{2}}\left[\left(\sin ^{2} \phi \cos ^{3} \theta\right)+\left(\cos ^{2} \phi \cos ^{2} \theta\right)+\sin ^{2} \theta\right] \\
& \quad+\frac{\partial^{2} u}{\partial y^{2}}\left[\left(\sin ^{2} \phi \sin ^{2} \theta\right)+\left(\cos ^{2} \phi \sin ^{2} \theta\right)+\cos ^{2} \theta\right]+-\frac{\partial^{2} u}{\partial x^{2}}\left[\cos ^{2} \phi+\sin ^{2} \phi\right] \\
& \\
& \quad+\frac{\partial u}{\partial x}\left[\frac{2 \sin ^{2} \phi \cos \theta+\cos ^{2} \phi \cos \theta-\sin 1^{2} \phi \cos \theta-\cos \theta}{\rho \sin \phi}\right] \\
& \\
& \quad+\frac{\partial u}{\partial y}\left[\frac{2 \sin ^{2} \phi \sin \theta+\cos ^{4} \phi \sin \theta-\sin ^{2} \phi \sin \theta-\sin \theta}{\rho \sin \phi}\right]
\end{aligned}
$$

But $2 \sin ^{2} \phi \cos \theta+\cos ^{2} \phi \cos \theta-\sin ^{2} \phi \cos \theta-\cos \theta=\left(\sin ^{2} \phi-1-\cos ^{2} \phi-1\right) \cos \theta=0$ and similarly the coeflicient of $\theta_{t} / \partial_{y}$ is 0 . Also $\sin ^{2} \phi \cos ^{2} \theta+\cos ^{2} \phi \cos ^{2} \theta+\sin ^{2} \theta=\cos ^{2} \theta\left(\sin ^{2} \phi+\cos ^{2} \phi\right)+\sin ^{2} \theta=1$, and similarly the coefficient of $\partial^{2} u / \partial y^{2}$ is 1 . So Laplace's Equation in spherical coordinates is as stated.
10. (a) Consider a polar division of the disk, similar to that: in Figure 16.4-4 [ET 15.4.4], where $0=\theta_{0}<\theta_{1}<\theta_{2}<\cdots<\theta_{t t}=2 \pi, 0=r_{1}<r_{2}<\cdots<r_{m i}=R_{n}$, and where the polar subrectangle $R_{i j}$, as well as $r_{i}^{*}, \theta_{j}^{m}, \Delta r$ and $\Delta \theta$ are the same as in that figure. Thus $\Delta A_{i}=r_{i}^{*} \Delta r \Delta \theta$. The mass of $R_{i j}$ is $\rho \Delta A_{i,}$ and its distanee from m is $s_{i j} \approx \sqrt{\left(r_{i}^{+}\right)^{2}+d^{2}}$. According to Newton's Law of Gravitation, the force of attraction experienced by m due to this polar subrectangle is in the direction from m towards $R_{i, j}$ and has magnitude $\frac{G_{m i} \Delta A_{i}}{s_{i j}^{2}}$. The symmetry of the lamina with rospect to the x - and y-axes and the position of m are such that all. horizontal components of the gravitational force cancel, so that the total force is simply in the s-direction. Thus, we need only be concemed with the components of this vertical torce; that is, $\frac{G m \rho \Delta A_{i}}{s_{i j}^{2}} \operatorname{ain} \alpha$, where α is the angle between the origin, r_{i}^{4} and the mass $t m$. Thus sin $\alpha=\frac{d}{y_{i j}}$ and the previous result becomes $\frac{G m p d \Delta A_{i}}{s_{i j}^{3}}$. The total attractive force is just the Riemant sum $\sum_{i=1}^{i \pi h} \sum_{j=1}^{n_{n}} \frac{G m p d \Delta A_{i}}{3_{i j}^{3}}=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{G m \rho d\left(r_{i}^{*}\right) \Delta r \Delta \theta}{\left[\left(r_{i}^{*}\right)^{3}+d^{3}\right]^{3 / 2}}$ which becomes $\int_{0}^{R} \int_{0}^{3 \pi} \frac{G m \rho d}{\left(r^{2}+d^{3}\right)^{3 / 2}} r d \theta d r$ as $m \rightarrow+\infty$ and $n \rightarrow \infty$ Therefore,

$$
F=2 \pi G m \rho d \int_{0}^{R} \frac{r}{\left(r^{3}+d^{2}\right)^{3 / 2}} d r=2 \pi G m \cdot \rho d\left[-\frac{1}{\sqrt{r^{2}+d^{2}}}\right]_{0}^{1 / 2}=2 \pi G m \rho d\left(\frac{1}{d}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right)
$$

(b) This is just the result of part (a) in the limit as $R \rightarrow \infty$. In this case $\frac{1}{\sqrt{R^{2}+d^{2}}} \rightarrow 0$, and we are left with $F=2 \pi G m \rho d\left(\frac{1}{d}-0\right)=2 \pi G m \rho$.
11. $\int_{0}^{x} \int_{11}^{x} \int_{0}^{F} f(t) d t d z d y=\iiint_{E} f(t) d V$, where
$E=\{(t, z, y) \mid 0 \leq t \leq z, 0 \leq z \leq y, 0 \leq y \leq x\}$.
If we let D be the projection of E on the $y t$-plane then
$D=\{(y, t) \mid 0 \leq t \leq x, t \leq y \leq x\}$. And we see from the diagram

that $E=\{(t, z, y) \mid t \leq \pm \leq y, t \leq y \leq x, 0 \leq t \leq x\}$. So

$$
\begin{aligned}
& \int_{10}^{\pi} \int_{0}^{y} \int_{0}^{x} f(t) d t d x d y=\int_{0}^{\pi} \int_{1}^{x} \int_{t}^{y} f(t) d z d y d t=\int_{0}^{\pi i \pi}\left[\int_{1}^{x}(y-t) f(t) d y\right] d t \\
& =\int_{0}^{x}\left[\left(\frac{1}{2} y^{2}-t_{y}\right) f(t)\right]_{y=t}^{u=x} d t=\int_{0}^{x}\left[\frac{1}{2} x^{3}-t r-\frac{1}{2} t^{2}+t^{2}\right] f(t) d t \\
& =\int_{0}^{x}\left[\frac{1}{3} x^{2}-t x+\frac{1}{2} t^{2}\right] f(t) d t=\int_{0}^{x}\left(\frac{1}{2} x^{2}-2 t x+t^{2}\right) f(t) d t \\
& =\frac{1}{2} \int_{0}^{*}(x-t)^{2} f(t) d t
\end{aligned}
$$

