15 Review ET 14
CONCEPT CHECK

1. (a) A function f of two variables is a rule that assigns to each ordered pair (z, 1) of real numbers in its ¢ omain a unique real
nunber denoted by f(a, 4).

(b} One way Lo visualize a function of two variables is by graphing it, resulting in the surface z = (x,+). Another method for
visualizing a funetion of two variables is 4 contour map. The contour map consists of level curves ot . 1e fimction which are
horizontal traces of the graph of the function projected onto the zy-plane. Also, we can use an arTovs liagram such as
Figure 1 in Section 15.1 [ET 14.7],



0CT-02-2008 THU 08:44 AM HCC MATH & BUSINESS FAX NO. 206 870 4850 P. 02

CHAPTER 18 REVIEW ETCHAPTEI}'4 [ 443

2. A function [ of three variables is 2 rule that ussigns to each ordered triple (&, y, z) in its domain a unigue real nu - pber

Fla,y, z). We can visualize a function of three variables by cxamining its level surfaces f{x, v, z) = &, where & & a constant.

3. lim  f(x,y) = I. means the values of f(w, ) approach the number £ as the point {z, y) approaches the po. u (&, b)

[EEN TR
alung any path that is within the domain of f. We can show that a lirmit at a point does not exist by finding two difi rrent paths
approaching the peint along which f(w, ) has different limits,
4, {2) See Definition 15.2.4 [ET 14.2.4).
(b) If # is contimous on B¥, its graph will appear as # surface without holes or breaks,

5. (a) See (2) and (3) in Section (5.3 [ET 143}

(b) See “Interpretations of Partiul Derivatives™ on page 917 [ET 8811,

(¢) To find f,, repard y as a constant and differentiate f{w,y) with respect to . To find f,,, regard = as a consta;: and
dillerentiate F(,y) with respect to v,
6. See the statement of Clairaut’s Theorem on page 921 [ET 883)
7. (a) See (2) in Section 15.4 [ET 14.4]
(h) See (19) and the preceding discussion in Section 15,6 [ET 14.6].
8. Sce (3) and (4) and the accompanying discussion in Section 13 4 TET 14.41, We can interpret the linearization ot at {a,b)
‘ geometrically as the linear finction whose graph is the tangent plane to the graph ol f at {en, ). Thus it is the lin.:; r function
| which best spproximates f near {a, b).
9, (a) See Definition 15.4.7 [ET 14.4.7].

(b} Use Theorem 15.4.8 [ET 14.4.8].
10, See (10) and the associated discussion in Section 15.4 [ET 14.4].
M. See (2)and (3) in Section 15,5 [ET 14.5].
12, See (V) and the preceding discossion in Section 155 [ET 14,51,
13. (a) %ee Definition 15.6.2 [ET 14.6.2]. We can interpret it as the rate of change of f ut {za, Yo) in the direction o 1a,
i Geometricalty, it P is the point (20, va, f{za, vo)) on the graph of f and ' is the curve of intersection of the praph of f
‘ with the vertical plane that passes through P in the direetion 1, the directional derivative of f at (zq, 4) inti: direction of

u is the slope of the tangent line to (7 at P. (Sece Figure 5 in Section 15.6 [T 14.6].)
{b) See Theorem 15.6.3 [ET 14.6.3].
14, () See (8) and (13) in Section 15.6 [ET 14.6].
(by O fla,y) = CHx,y)-wor Du flo,y,8) = V(e y, ) -u
1 {c) The gradient vector of a function points in the direction of maximum rate of increase of the function, On a guoh of the
function, the gradient points i the direction of steepest ascent.

15, (a) f has a local maximum at (o, b)) if f(n,0) = fla, 6) when (&, y) is near (a, b).

(b} f hag an absolyte maximum at (e, b) it f{z, ) = f(a, b) for all points (z, ) in the domain of f.
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(c) f has a local minimum at (e, b) if f(z, ) = f(a, b) when (z, ) is near (a,b).
(d) f has an absolute minimum at (a, b) if f(z,v) Z f (a, b) for all points {2, y) in the domain of f.

{g) f has & saddle pomt ot

a, b) is a local maximum in one direction but & local minimum in 1nother,

(a) By Theorem 15.7.2 [ET 14.7.2], if f has a local maximutn at (e, b) and the first-order partial derive ives of f exist there,
then fo(,b) = O and fy,(a,b) =0.

(b) A critical point of f is & point (a, b) such that f- {a,b) = 0 and f,(a,b) = O or one of these partia lerivatives does not

exist.
17, &ee (3) in Section 15.7 [ET 14.7]
‘ 18, () See Figure 11 und the accompanying discussion in Section 15.7 [ET 14.7}.
(b) See Theorem 15.7.8 [ET 14.7.8].
(c) See the proceduse autlined in (9) in Seetion 15.7 [ET 14.7).
‘ 19, See the discussion beginning on page 970 [ET 934]; see “Two Constraints™ on page 074 [ET 938].
I TRUE-FALSE QUIZ
i .
it 1. True. f,{a,b) = riuimb fla,b+ h’; f(a.b) from Equation 15.3.3 [ET 143.3]. Letk = y — b As h > 0,y — b, Then by
i -
kS .
1 - £
i substituting, we get f,(a,b) = lm MP”—Q.
': y—rh W b
2. False. If there were such a function, then fzy = 2y and fyz = 1. 50 fuy # fyz. which conwadicts Ciiiraut’s Theorem.
‘ & f
3. Fulse, fu;,, = m
4. “fruc. From Equation 15.6.14 [ET 14.6,14] we get Dy f (2,4, 2) = V{1, 2) - (0,0, 1) = fa .y, 1
5. False, See Example 15.2.3 [ET 14.2.3],
6. False. See Exercisc 15.4.46(a) [ET 14.4.46(a)].

10.

1.

. True. If f has a local minimum and £ is differentiable at (a, b) then by Theorem 15.7.2 [ET 14.7.2], 1. (g, b) = 0 and

fula,b) = 0,50 Vf(a,b) = {fu(a.b), f,(a,)) = (0,0) = 0.

. False. If f is not continuous at (2, &), then we can have  lim fla,y) # f(2,5). (See Example | 12,7 [ET 14.2.71.)

(i) =+ (2,8)

. Palsc, Vf(:r.,'y) = {0,1/wy).

12

True. This is part (c) of the Second Derivatives Test (15.7.3) [ET (14.7.3)].
Troe. Vf = (cos @, cosy), 50 |V | = +/cos® z + cos®y. But [eosf| < 1,50 [V f| = V2. MNow
Dy f{z,y) = VFu = |VF] |ul cos 8, but w is a wait vector, sa | Dy, flz, 1) = v2-1-1=2.

False. See Exercise 15.7.37 [ET 14.7.37].
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EXERCISES

lipegy = —x — 1.

2 /472 Ty isdefined only when4 — 2% — 9 >0 @ zf4¢f < dand
V1w 22 i defined only when 1 — 22 =0 & —1<gp<1,sothe domain of
fis{(z,9) | -1 %2 <1, -T2 £y < /4 — 2%}, which consists of those

points on or inside the circle 2® + 4 =4for-1 < x < 1.

8 z= f{z,y) =1 —1° aparabolic cylinder 4 z = flz,y) = &* + (y — 2)?, a circular < 13boloid with
z veriex (0, 2,0) and axis parallel to the z-a:

z

o

5. The level corves are /da? + y% = kor 4% ~ 4° = k2, 8. The level curves are ™ +y = hory=—:" + k. &
k = 0, a family of ellipses. family of exponential curves.
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8. f is a rational function, so it i continuous on its domain. Since [ is defined at (1, 1), we use direct s, listitution {0 evaluate

. . 2py B 2
thelimit M It T TE42(1)F B

10. As (1) — (0,0) along the w-axis, f(z,0) = 0/z* = 0 for x # 0, s0 f(z, ¥} -~ 0 along thie lini: But

flz, @) = 2¢%/(32%) = 3, s0as (z,y) — (0,0) along the line = =y, fx,y) = Z. Thus the limit J»esn’t exist.

1. (@) T::(8,4) = him IE+h 4"1 —T(6.4) , 0 We can approximate Ti; (6, 4) by considering h == o ! and

T(8,4)—T(6,4) _ 8680 _,

using the values given in the table: Ty (6, 4) » 5 - \

T, (6,4) &= T(4,4) _ET(G"” = 72__280 = 4. Averaging thesc values, we estimate 75(6,4) 15 be appraximately
Mary - )

3.5°C/m, Similarly, Ty (6,4) oIt was good to see you [, which we can approximate with . = £2:

last month - thank you
o T(6,6) - T(6,4) |for making the effort to T(8,2) - T(6,4) _8T—8C ; "
Ty (6, 4) = ——=—= " {come see us-) ) R 5 - " 3.5, Averaging these

A friend talked me into
going to a conference
in DC at the end of :
(b) Heren = <T}§’ ?3'5> s0 by EqiNovember. Would it be wT(6,4) = VT(6,4) - v =Tu(6 ) J3 -+ T,(0,4) J5.

values, we estimate T3, (6, 4) 1o

Using our estimates from part (a), we have [, T(6,4) & (3.5) J¢ + (=3.0} == = o7 7 0,545, This means that as we

move through the point (6, 4) in the direction of u, the temperature increases at a rate of appron inately 0.35°C/m.

T(s “hdpd+idg) - T(6,4)

g Altenatively, we can use Definition 15,62 [ET 1462} DuT(6,4) = lim ]
s . o . T(8,6)—T(6,4) 80— 80
i which we can estimate with b = +2+/2. Then I, T(6,4) = L = = 0,
we G ith +v/2. Then (6,4) WG W
DuT(6,4) ~ T2 = TE,4) _ TAZ80 2 4 eraging theso values, we have Dy T, 4) = 53 = 1.1°C/m.

—-2+/2 -2 T V2

Tolesy £ - Bel@) o (64) = lim Ta(6d + }';i' = T=(6:9) hich we cun

a .
(6} Ty (2. 9) = B_y [Tz (=, u)] = flf_rﬂl:' 7
estimate with A = 2. We have T (6,4) ~ 3.5 from part (z), but we will also nced values for 1 (6, 6) and T (8, 2). [fwe
use h = £2 and the values given in the table, we have

T(8,6) — 1'(6,6) 80 — 75
2 T a2

T(4,6) - T{6,6) 68 — 7
-2 ]

= 3.5,

Te(6,6) = = 2.5, Tw(6,6) &



DWilson
Text Box
Mary - 
It was good to see you last month - thank you for making the effort to come see us:-) 
A friend talked me into going to a conference in DC at the end of November. Would it be possible for my friend Aaron and I to stay with you the last night of our trip? The date would be Saturday, 11/22 (probably arriving in the evening on Saturday with a flight out around dinner time on Sunday). 
Thanks so much and I hope to see you soon (certainly sooner than expected). 
Sincerely, �Dust - 
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Averaging these values, we estimate Th {(6,6) ~= 3.0. Similarly,

T(8,2) — Tu(6,2) _ 90 — &7
T, (6,2) = (8’)2 €2 _ = =1.5,Tw(6,2)m

T(4,2) - T(6,2) _ 74 — 87

=3 . = 6.5.

hege values, we estimate 75 (6, 2) =2 4.0 Finally, we cstimate Ty (6, 4):

Te(6,2) — Tu(6,4) _ 4.0 — 3.5

T:(6,6) —Tw(6,4) _ 3.0 — 38 _
2

= -0.25.
2

Tuy(6,4) = —0.25, Tzy(6,4) =

Averaging these values, we have Ty (6,4) = —0.25.

12. From the table, T(6, 4} = 80, and {rom Exercise 11 we estimated Tw{6,4) 72 3.5 and 73,(6, 4} = —3.0. The linen:
approximation then is
T (x,y) 7 T(6,4) + T (8, 4) (w — 6) + T, (6,4)(y — 4) = 80+ 3.5(2 — 8) — 3y —4) = 3.5u — 8y + 71

Thus at the point (5, 3.8), we can use the linear approximation to estimate T(5,3.8) = 3.5(5) — 3(3.8) + 71 = "1.1°C,

13 flz) =it = fa=iQs+y0) 72 = ﬁ, fo = 120+ 4% (2) = \/_zTy:L B
14 w=e"Tain = u,=—e "sin20, up = 2" cos2d

15. glu,v) =utan™'v = gy =tan v, g, = ﬁtﬁ

16w = = — = W= ;%—;, wy = w(~1){y—z)"* = _(y__wg we = (1) — 2)"2(=1) = —2 .

17. T(p,q,r) =pln{g+e") = T, = n(g+e"), T, = queFv T = q]frgr

18, € = 1440.2 + 4.67 — 0.055T 2 + 0.00029T* 4 (1.34 — 0.017)(5 — 35) + 0.0160) =
BC/OT = 46 — 0.11T + 0.00087T* ~ 0.01(S — 35), 8C/8S = 1.34 — 0.01T, and HC/BD = 0.016. When T = 10,
& =35, and D = 100 we have #C/8T = 4.6 — 0.11(10) + 0.00087(10)% — 0.01(35 — 35) A 3.587, thus in . °C water
with salinity 35 parts per thousand and a depth of 100 m, the speed of sound increases by abour 3,59 m/s for every degree
Celsius that the water temperature rises. Similarly, 8C/85 = 1.34 — 0.01(10) = 1.24, so the speed of sound in::iases by
about 1.24 m/s for every part per thousand the salinity of the water increases. AC/HD = 0,018, 50 the speed of : sund

increases by about 0.016 m/s for every meter that the depth is increased,

19, flz,y) = 42° —2y® = f.=123" — 4", fu = 20y few = M2 fuy = —2, fou = fou = —

—2y

. oz = e = g, =Y, 2y = —Bpe~ W, s =0, g, =407, 2y = By = —2e~

. _f(:c,y,z) = Ikyt,,m = f'r —k::t:"' =y 1 =M f — 1:1!* l-1 Pl f — .'TJL y zm l’ fz: ﬂfﬂ(:k '__l)mk—‘;:”, zm1
= {1 — 1)y "22™, faz = m(m— 1)az* 5™ fay = Fuo = Kz T Y for = faa = Fmat ™ 2™E,

Fuz = fou = Imzby'—1zm!

22,y = rcos(s +2) = v, =cou(s +28), wa = —ruin(s -+ 2t), v = —2rsin{s +2), ver =0, vy = -7 cos(s + 2t),

vy = —dr cosla + ), Ups = Ver = —sin(s + 2t), Ve = v = —2 ginfa -F 28), va = vee = —2rcos(s + 1)
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Oz Y oy . Oz .
Crmaytzet/t = oy Ze¥/T oW =z 4 ¥/ and
4 Ty + gz =Y + By
z 'gi Ty 3; = W(I’ - %«-‘;WI + ew”") +y(m + e:”’m) = wy— ye¥/* f et powy +yedT = wy oy wel/T = wy o2,
i t

24, z = sin (5 -+ sint) = 2 _ coa(x + sin f), %% = cos (T + gint) cosd,

L O

. - 2

« 8%z . . 9%z . .

! T~ T Sn (x +sint) cost, FF = —sin {z + sint) and
e %z .
LA cos(z + sint) [— sin (z + sint) cost) = cos {z + sint) {cost) [— sin {w + sint)] = bz
dz dwdt ‘ ot bz

25 (2 =6x+2 = z,(1,-2)=H&and z, = -3y = z,(1,-2) = 4, so an equation of the tangent lane is
g—1=8x-D+Hy+orz=8r+4y+ 1.
(b)Y A normal vector to the tangent plane (and the surfaee) at (1, —2,1) is (8, 4, ~1). Then parametric equsiims for the normal

. - -1 2 21
line there are @ = 1 + 8, y = —2 + 4t, 7 = 1 — £, and symmetric equations are ‘TT = %_. =

26 (8 zz =e"cony = (0,0 =1landz, = —"siny = z,{0,0) = (, so an equation of the tang: t plane 13
z—1=1{z-0+0y—0orz=x+1

(b) A normal vector to the tangent plane (and the surface) at (0,0, 1) is (1,0, —1}. Then parametric equati- s for the nermal

ling thereare z = t, y = 0, & = 1 — ¢, and symmeiric equationsarex =1 — 2,y = 0.

27, (8) Let Fw, v, %) = @* + 2¢* — 3z°, Then My = 22, F, = 4y, Fy = —6z,50 Fu(2,-1,1) = 4, F,(2, - |, 1) = —4,
F.(2,—1,1) = —6. From Equation 15.6.19 [ET 14.6.19], an equation of the tangent plane is
4z — 2) —4(y + 1) — 6{x — 1) = 0 or, equivalenily, 2z — 2y — 3z = 3.

s @ 1 a=1
(1) From Eguations 15.6.20 [ET 14.6.20], syrmmelric equations for the normal Jine are x vt .

28 (a)Let F{z,y,8) =ay+yz+2x. Then Fr =y+a Fy =2+ F: =54y, 50
F.(1,1,1) = F,(1,1,1) = F:(1,1,1) = 2. From Equation 15.6.19 [ET 14.6.19], an equation of the -, 1gent plane is
2z — 1)+ 2(y — 1) + 2(x — 1) = U or, equivalently, z + y + z = 3.

() From Equations 15.6.20 [ET 14.6.20], symmetric equations for the normal line are & —+ = ¥ =1 _ %,

2 2 El
equivalently, = = y = 2.

2. () rlu,v) = (w+v)i+u®j + vk and the point (3,4, 1) corresponds tow = 2, v = 1. Thenr, =i+ uj =
r {21 =i+4jandr, =i+ 2k = r1u(2,1) =i+ 2] A normal vector to the surface at (3,+: 1) is
Ty % Ty == 81— 2 4k, 50 an equation of the tangent plane thers is B{w — 3) — 2(y — 4) — 4{z — 1) +: 0 or equivalently
dao—y— 22 = 6.

(h) A direction vector for the normat line through (3,4,1) is 81 — 2§ — 4k, s0 a vector equalion i

r(#) = (3i4+4j+ k) + £ (81— 2j — 4k), and the corresponding parametric equations are z = 3 + ¢ y = 4 — 2¢,
21 —4tL
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0. Let f(z,y) = 2% + y*. Then fx(x,y) = 2z and f, (=, y) =4y, s0 f(L 1) =12,
fu{1,1) = 4 and an equation of the tangent plane is ¥ — 2 = Me—1)+4y—1)

or 2x + dy -~ = = 4. A normal vector to the tangent plane is (2,4, —1) so the

. r—1 —1 i — 3
nomoal line is given by 7 = ¥ 1 L — z_ld arx =1+ ye=1-=4t,

g=2-—t

#1. The hyperboloid is & levei surface of the function F(z,y, z) = 2% + 4y — 2%, s0 a nummal vector to the surface at (=), Y0, 20)
wo o, %) = (2o, Bug, —22). A normal vector for the plane 2z + 2y + z = 5 is (2,2,1). For the planes 12 »e
parallel, we need the normal vectors to he parallel, so (2@, Byo, —2z0) = K (2,2,1), 0120 = k. 4o = ik, and 2 -~k
Butel +dpf —z5 =4 = K +3P—4k* =4 = k=4 = k= =£2 Botherearetwo such ponii:

(8,1, —1) and (—2,—3,1).

- Ju A it et ;
o at - N = ’
32 u=In(l +3¢*) = du B ds + 5 4 TTse® s T et 3

k4 3
. . yE X
3. [z 2) =Vt 22 = folm,y, 2) = 322 yT + 22, fulay g) = mee—m—e, fal@ ) = ——11
S, u %) H fa{m,u, 2} Ful ) T =" \/y—+
so £(2,3,4) = 8(5) = 40, £(2,3,4) = 3(4) V5 = 60, f,(2,5,1) = 28 = %, and fo(2,3,4) = L5t = L. T the

linear approximation of f at (2,3,4) is

Fly, ) = £(2,3,4) + fo(2,3,4)0{ — 2) + (2,3, 0y — 3) + f=(2,3,4)(z — 4)
=40+ 60(z —2) + B (y ~ 3+ F(z —4) =60c + Fy+ T2 - 120

Then (1.98)% /BOTIE + (3.07)2 = f(1.98,3.01,3.97) & 60(1.98) + Z1(3.01) + 3(3.97) — 120 = 38.656.

M4, (a) dd = g—j T + % dy = %y dr + %:c dy snd |Az] < 0.002, |Ay| 5 0.002. Thus the maximum error in the v culated

area is about dA = 6(0,002) + £(0.002) = 0.017 m® or 170 cm”.

. x y ! . .
(B) 2= /22 42, iz = NIy dx + dy and Az} < 0,002, | Ay} = 0.002. Thus the maximum «: “or in the

vt +y?

celenfated hypotenuse length is about dz = 5 (0.002) + 13(0.002) = %" == 0.0026 m or 0.26 cm.

du _ Budr  Oudy Oudsz

35 o= —_— v r——— = 3 ‘,32 B ] 3.1‘ -

dp  drdp ' By ap Ll dp ey (1 + 6p) + 3y (pe® + €*) + 42 (poos p + sinp)
v &y B Bv B'y ; oy 2 Ty xy

36 35 = T B + = aya (me:u.ny—i-y e“Y) (1) 4 (2" cosy 4 zye™ + £*¥) (1),

s=0,+t=1 = m=2,y=0.so~g—:=D~+(4+1)(1)=5‘

v Bvdr  tvdy Ty (v z g e @ T - =
R (2zsiny + y2e™) (2) + (x cony + Ty + e J(s)=0+0~0.
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‘ B dzdx  Ozdy , ) ey
o Oz  Oxdw OOy = f= p=g(l2) =3andy = h{1,2) = B s0
37. By the Chain Rule, 55 = Ba Ps | By Bs . When s = 1and r=g(1,2) and y {1,2)
i B _Bzdx | tudy
%’Z = F2(3,6)02(1,2) + fy (3.8) ha(1,2) = (7)(=1) + (B)(—5) = —47. Similarly, = = =z 27 + 5;‘;3?50
8 _ (00012 + 1 (5.6 A(1,2) = (&) + (H(0) =108

q 38, . W Using the tree dragram as & guide, we have

dw  Owdt | Guwdu . Hw B Bw _ Bwdt  dw Bu duw v
Bp Ot p TBubp Gwdp  Bg Bt Bg  Audg B By

- | .

! ] o
N /IN /NN e _owe owon gwey e _dudt Gudy, se
p g r §p 4 r s p 47 3

o Bt fr | Bu Or  Ov dr fsa 8l B  Huds  Ovds

Oz dz ; , df
P o —gf), Z=1-2 g R [where =_,—] Then
39 ™ wf{x® — o) By yf'{ y) f d(z? - )

oz

Az .
yﬁwa—y—zryf(-’c — %)+ o= 2yf (@" — o) =

A _
4. A= Loysing, do/dt =3, dy/dt = —2, d8/ds = 0.05, and d

d'B
il at

{(y sin 9) = + (z sin B) == J (rycos®) —
35 + 50‘-.:;3_
>

S0 when x = 40, y = §0and 8 = F, 5‘£ = %[( 5)(3) + (20)(-2) + + (1000 v/3)(0.05)] = = 60.8 in?/s.

41.%2%—— +2’E 2and

&z & [0z oyBz -y & [0z\ _ 28z &z Fz -y —y (& —y Fz
Gaz VO (E) TE0 S om\dv) w80 Ul Gz Bean t o\ E T uan !

e, aFe 2 Fr P

ws Hu LT x? Pudu Tt

Oz 8z 18z

Also EE =5 + v andd
&z 8 { Oz 18 (s 5z &z 1 1781 &z 5 822 8z 1 &%=
i = —— [ S| _— ] = —— —mm—— - — = —m—— =g e b D —— —_——
ay* o Ay (.fm) T x By (8‘0) ’“(auzwr v du te\Bre VB ” i " Sudv T i
Thus
&z Ay Wbz, 5 % e PG 4 .82 . O 8%
2@z 0% Aydr g aUE apt 2 a _ue
B g E = T he TOY B2 WV Fase Tofd TV B Y Buin 2R 0ot
2y d= 2 Bz dz &z
= SMEE : Y Yoy |
x v Ly S fu 2 v -
gincey = v = — ory’ = uw
s fz F yze™V® — 227 2z - pge®t?
42, F(z,y, 2) = 6% v yzt — 2757 = A = :
Fla.yz)=e ¥ v 0. 50 o F. ZyeTiE = dyzt — Btz | aye™¥d - 4,08 — 3xfg? and
Bz Fy xzemyx _ zd. 2‘,4 _ :ﬂZEI“z

By B, ayetvE — 4dyz® — 3ot myevE — dyzd — Bpsg?’
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44. (a) By Theorem 15.6.15 [ET 14.6.15], the maximum value of the directional derivative occurs when u hag the :21ac direction

as the gradient vector,

(b It is a minimum when u is in the direction opposite to that of the gradient vector (that is, u is in the directio; f =7 N,
sinee Dy f = [V f| cas 6 (see the proof of Theorem 15.6.15 [ET 14.6.14]) has a minimum when 8 = .

(¢} The directional derivative is O when 1 is perpendicular to the gradient vector, since then Dy f = Vf u=1

(d) The directional derivative is half of its maximum value when D, f = [V f|cosf = L [Vf] ¢ cosf=, <
§=

cal

45. Vi = (7 —2u), VF(1,5) = (1,-10), u= £(3, —4). Then Dy, f(1,5) = 48,

. VI = QCay+ V1% 2/(2vTHE)), ViL,2,3)=(6,1,4), u=(§,3,—2). Then Dy, £(1,2,3) =~ &5

47. Vf = (Qzy,2® +1/(2/F)), [VF(2,1)] = |{4, 2. Thus the maximum rate of change of f at (2,1) is *{-1;9 in the | m
direction <4, %)

4. Vf = (zye™, ame™, &™), VF(0,1,2) = (2,0,1) is the direction of most rapid increase while the rate is‘|(2, h Y| = VA

49. First we draw & line passing through Homestead and the eye of the hurricane. We can approxirmnate the divection . derivative at
Homestead in the direction of the eye of the huricane by the average rate of change of wind speed between the -1 ints where
this line intersects the contour lines closest to Homestead. In the divection of the eye of the hurricane, the wind 5| ved changes
from 45 to 50 knots. We estimate the distance hetween these two points to be approximately 8 miles, so the rate « "change of

wind speed in the direction given is approximately 15«'-:-‘-;5_;& = £ = 0.625 knot/mi.

' ‘, 50. The surfaces are f(x,y,2) = z — 22° + y* = O and g(=, y, z) = & — 4 = 0. The tangent line is perpendicular 1 both V f

and Vg at (—2,2,4). The vector v = V f x Vg is therefore parallel to the line, V(e oy 2) = {(—dw,2y,1) =

Vi(=2,2,4) = (8,4,1), Vg(z,y,2) = (0,0,1) = Vg(—2,2,4) = (0,0, 1), Hence

i i Jk

: v=VfxVg= |8 4 1|=4i- 8§ Thus, parametric equationsare: z = —~2 + df, y = 2 ~ 8¢, z = 4.

G0l

8. flzy) =" —zy+ " + 0 —6y+10 = fo=22~y+9,
fu=—2+2y—6, foun=2=f, foy = ). Then f» = 0and fu=0

imply y = 1, x = —4. Thus the only critical point is {4, 1) and

Jea{—4,1) = 0, D(~4,1} =3 = 0, 50 F(—=4,1) = —11 is a local minimum.
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52,

X8

55,

56

d f(:ﬂ, y} = ('Tz +y)”y/2 = fo= Qmewﬂ: Ju= E—'”/Q{z + z* + ?J)/gs

flz,y) =2° —6zy+8° = f.=3z% -6y, f, =—6c+ 24y2ﬁ‘
Jea = 6@, fiy = 48y, foy = —6, Then fz = 0 implies y = /2, substituting
into f, = 0 implies 6z (2 — 1) = {, so the critical points are (0, 0), (1, -;—)
D{0,0) = —36 < 0so (0,0) is a saddle point while frz (1, %) =6 > Dand
D(1, 1) = 108 > 050 f{1,4) = —1 is a local minimum.
fle, Q.) = day — oty —ay® = fo=3y— 2y -7
fo =32 —r" — 20y, fow= -2y, fyy = =2, fuy =3 ~ 20 — Zy. Then

' = 0implies y(3 — 2% — y) = O0soy =0 ory = 3 — 2z. Subatimting into
fy = 0 implies 2(3 — ) = 0 or 3w(—1 + x) = 0. Hence the critical points are
(0,00, (3,0% (0,3) and (1,1). D{0,0) = D(3,0) = D(0,3) = —9 < 0o
(0,0}, {3,0), and {0, 3) are saddle points, D{1,1) = 3 > O and

fax(1,1) = =2 < 0,50 £(1,1) = 1is a local maximumn.

foz = 26""2, fry = &//*(4+ 2% + y)/4, fup = ze¥/*. Then fo = 0 implies
#=10,50 f, = O implies y = -2, But f,..(0, -2) > 0,

D(0,-2)=e"* —0 > 0so f(0,—2) = —2/e is a local minimum.

First solve inside D. Here fz = 4y® — 2oy — 4%, f, = Szy — 22y — 3my®. ¥

Then f; = Oimplies y = 0 ory = 4 — 2z, buty = 0 isn't inside D). Substituting 0.6)

y=4-2ximo fy = Oimpliesw == 0, z = 2orz = 1, but & = 0 isn’t inside D, L

and when = = 2, ¢ = 0 but (2, 0) isn’t inside D. Thus the only critical point inside J N

Dis (1,2) and f(1,2) = 4. Secondly we consider the boundary of D, Ll - L) .
i

OnLy: f(2,0) =0andso f=00onL;. OnLa: £ = —y+ 6Gand

Flo-y+6,u) = ¥*(6 — y)(—2) = ~26y° — y*) which has critical pointsat iy = D and y = 4. Then £(6,0} = 0 while
f(2,4) = —64. On L3 f(0,) = 0,50 f = Oon Lz. Thus on 1 the absolute maximum of f is F(1,2) = vhile the
absolute minimum is £(2,4) = —gd4.

Inside [; f, = 2me_’=”"’2(1 — % —2y") = O implies 2 = O or 2® + 2° = 1. Then ifz = 0,
- 2 = T
Fu = 2ye (2 — 2% ~2¢") = 0 implies y = 0 or 2 — 2y® = 0 giving the critical points (0,0, (0,=1. B
z? + 2% =71, then £, = 0 implies y = 0 giving the critical points (+1,0). Now F(0,0) =0, f(£1,0) = ¢ " and

P. 01/08

F(0,£1) = 2™, On the boundary of D: 2* + 3" = 4,50 f(z,y) = " *(4 + 4*) and f is smallest when y ++ 0 and largest

when y° = 4, But f(£2,0) = 4e=¢, £(0, 4-2) = 8%, Thus on D the absolute maximum of Fis F(0,£1} -+ 2¢™ and the

absolute minimum is £(0, Q) = 0.
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Fla,y) =2 — 3z + 3t — 2°
1.5
: £ QI O
s W
e T OO ANWNAL
* ON CTT] s \_/ /)
T | - 1] R
N [T o
|11 o
1] - [
= e s ‘;.k et
bl 1 1.5
¥

From the graphs, it appoars that f has a local maximum f(—1,0) == 2, local minima f(1, =1} & —3, and ;5 vddle points at
(—1,£1) and (1,0).

To find the exact quantities, we calculate f, = 32° —3=0 < r=Zlandf, =4 -4y =0 11
y = 0, &1, giving the critical points estimated above. Also fio, = 6, foy = 0, fou = 1242 — 4, 50 using (e Second

Detivatives Teat, 2{~1,0} = 24 = 0and fr.{—1,0) = —6 < O indicating a local maximum f{—1,0) =

DL, 0) = —24, indicating saddle points,

Fla, ) =12+10y —22° — 8zy — ¥t =  fo{z,y) = —4z — 8y, fulz, 1) =10 — 8z — 4" Now f, ) =0 =

2 = —2, and substituting this into f, (2, y) = 0 gives 10+ 16y ~ 4y =0 = 5+ 8y — 2" =0

Bt
|

From the first graph, we sce that this is true when ¢ /¢ —~1.542, —0.717, or 2.260. (Alternatively, we could yiave found the

2 50

Savil

-10

4
AE—2 ¥

solutions 1o f, = f, = 0 using a CAS.) 8o to three decimal places, the critical points are (3,085, —1.54%2), /1.434, —0.717),
and (—4.519, 2.260). Now in arder to use the Second Derivatives Test, we caleulate for = —4, fo = 8, |y = —12y%, and
D = 48y* — 64. 80 since [2(3.085, —1.542) = 0, D(1.434, —0.717) < 0, and (—4.519, 2.260) = (0, ar1l fy, is always
negative, f(x,y) has lncal maxims f(—4.519, 2.260) == 49.373 and f{3.085, —1,542) == 9.948, and a sal {Je point at
approximately (1.434, —0,717). The highest point on the graph is approximately (—4.519, 2.260, 44.373) |

Fla) =% gley) =2 +9* =1 = Vf=(2my,z") = AVj = (2Az, 22y). Then 2zy = 2h ind 2° = 20y

imply A = 2°/(2y) and A =y if « 3 O and y # 0. Henee @® = 2%, Then 2 + 4 = Uimplies 8* = 15: y = =2 and

1
==+ %. Note if 2 = O then o® = 2Ay implies y = O and § (0,0) = 0.} Thus rthe possible points are (1;‘ '?i: o ‘3) and

the ahsplutz maxima are f(:t z, 71;;) = 2= while the absolute minima are f(:l: g _T}E) =34
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8. flzy) =1e+1/y, glz,y) =1/a" +1/y° =1 = V= <—:a”"‘2, —y'2> =AVg= {=2Xz" —-22y~*). Then
I Y . 2% and _,y"Q = _2)\?,._3 ory =2\ Thusz = y, 50 _'i,/:,;:::IE + 1/1__,;E s 2/22 = implies & = £1/2
and the possible points are (2, £v/2 ). The absalure maxinum of f subject to z—* + yi=listher f(vZ,v2) =2

and the absolute minimum is f(—+/2, —/2)=—v2

61. .f(m: y,z) = Y=, g(maya z) = a? + yz + 2= 3. Wf = Avg = (yz,mz,my) : .«\(2&.", gyz 22) [ any of i, U OF 2 I8

, \ = e — ) whi ots 2 0 L a® _ bz _ T2 _ oy
zero, then ¥ = y = 2 = 0 which contradicts = +y +z 3. Then A el el

&3

= 2% =227 =

¥ = o, and similarly 2y2” = 2%y = 2 = g%, Subsrituting into the constraint equation gives 2% - ¢ - z% =3 =
7" =1=y" = +* Thus the possible points are (1,1, 41}, (1, —1,:E0), (—1,1, £1), (=1, —1, £1). The absolute maximum
is f(1,1,1) = f(1,-1,~1) = f(=1,1, —1) = f(-1,-1,1) = 1 and the absolute

minimum is £(1,1, 1) = f(1,=1,1) = f(~1,1,1) = (=1, ~1,—1) = -1,

=

2. flr,y,2) = 2% + 2 + 32, glosmz) =e+y+s=1 hiz,yz)=z-y+22=2 =
V= Q2x,4y,62) = AVg + uVh = (A + u, A AR ZwandZe=A+ 4 (1), dy=A—p (), Gr=A+ 2u (3),
THyYy+z=1H), =—y+2z=2 (5), Thensix times (1) plus three times (2) plus two times (3) im)i es
Rz +y 4+ 2) = 11N + Ty, 50 (4) gives 112 + 71 =12. Also six times (1) minus three times (2) plus fis 1+ limes (3) implies
12(z —y - 22) = TA + 17w, 50 (5) gives TA + 17u = 24. Solving 11A + 7y = 12, A+ 17 = 24 sin Jltaneously gives
A=S,u= Subsutunng into (1), (2), and (3) implies 2 = L,y = — 45, = = &L giving only one peirt. Then
Fli.-&. 1%) = #2. Now since (0,0, 1) satisfies both constraints and F0.0,1) =38 f(2, £ ) =2 isan

. absolute minimum, and there is no absolute maximum.

B. fzy.2) =2+ + 2% glz,y,2) =¥ =2 = Vi = (22,2y,22) = AVy = (My%2®, 20y | BAzye?)

Sincery®s® = 2,2 0,45 0andz £ 0, 50 2r = AP ), 1=zt @), 2= 3Azy®z (3). Ther (2) and (3) imply

1.2 or 2 = or3z° = % s0 - = +-L: But
oy Buylz z C B Rt

2 i
3 3-’-‘(»‘1{2

= Sy = +=

2y

#y*2® = 2 50 x and = must have the same sign, that is, 7 = w2, Thus g(z, y, 2) = 2 implies mz(§2%) =20
# = £3"/% and the possible points are (+£3~ 1/, 3TVAVE, 234, (2574 _gmi g +3"1). Howe 11 at each of these
points f takes on the same value, 2+/3 But (2, 1, 1) also satisfies g(@,y, %) = 2and £(2,1,1) =6 > 2+ Thus f has an

absolute minimum value of 2 +/3 and no absolute maximum subject to the constraint zy% 3 = 2,

Alternate solution: g(z,y, 7) = ryis® =2 implies y* = ;%5, so minimize f{x, 2) = o* + —z +z% Thin

2 6 24 6 .
f»::=2$—rm=f;=—;;+2z,fzm= d;fzz— "-m;d. e = 0ty lies

20°:° -2 =00rz = 1/z. Substituting into £, = O implies —62° + 227! = Qor o — ﬁ 50 the two ety sal peints are
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(£ £98). Ten D(+-4,287) = 2+ 92+ 3) - () > 0and fua (45, £9) =6 1th point

is a minimum. Finally, ¢° = ;3—3, 50 the four points closest to the origin arc (:|:§|’—L’57 ﬁ&;, =3 ), :1:71-\/3, pr Ik ‘Vg)

o~

+3aqy+2 08,z = O,y =(
with x, y, » all positive. Then (yz, xz, 2y) = (A, 2A,2)) mplies 2ye = sz oror =2yand xz = oyor =z =y, The

g{x, ¥, %) = 108 implies 6y = 108 or y = 18 = z, = = 36, o the volume is V7 = 11,664 cubic units. Since (104, ., 1) also
satisfies g(:,y, #) = 108 and (104, 1, 1) = 104 cubic units, (:36, 18, 18) gives an absolute maximum of V' subject 1o

gz, y, £} = 108. But if w + 2y + Z& < 108, there exisis o > 0 such that = + Zy +» 2z = J08 — ov and as above

By = 108 —~ o implies y = (108 — @) /6 =2z, £ = (108 — o) /3 with V = (108 — o)¥/(6% - 3) = (108)%/(6° - 3) :: 11,664,
Hence we have shawn that the maximum of V subject to g(z, y, 2) < 108 is the maximum of V subject to g(z, y, 2’ = 108

(an intuitively obvious fact),

The arca of the trangle is 4 ca sin  and the area of the rectangle is be. Thus, the

[ 4 areq of the whole object is f(a, b, ¢) = e sind + be. The perimeter of the ol <ot

is gla,b,c) = 2a + 2b+ ¢ = P. To simplify sin ( in terms of @, b, and & notic:

thar a® sin® @ -+ (-}c,)z =g? = gind= % vda® — ¢2. Thus

Fla,be) = \/fluE — ¢ 4 be. (Instead of using 8, we could just have used tf
Pythagorean Theorem.) Az a result, by Lagrnge's method, we must find ., b, , and A by solving Vf = AV g whic ijives the
following equations: ca(da® — c®)™V2 = 24 (1), ¢ =21 @), 1(4a® — A)V2 - $c*(da® — c®)"HE 4 b =) 13), and
2a+2b+ = £ (4). From (2), A = gcand 5o (1) produces ca(da® — c*) ™2 =¢ o (da® - P) 2 =g

1/a

p
40w ef =a® = c=+Ba (5). Similarly, since (40 — e} = nand A = ic, (3) gives ;i - ﬁ-— +b= g i1, from
4 da

g 30 Vaa . ;) \/ﬁa
GLg-THb="g = —3-=3

=—b = b= §(1 ++/3) (6). Substituring (5) and (6) into (4) <1 pet:

P 2V3-3

So+a{l+v3) +v3a=F = Ju+2vV3ia=P = a= P and b
( ) 3+23 3 .

. (3\/:-—32‘(1"'"/5)}:2 a_ﬁﬁPandcz (2-V3)P.

6. @) x() = oD+ ¥+ Fe@ vk~ v=F=Zie Wi (&, 2 Yic by theChain vl

2 P2
Therefore K= %m\vﬁ = % j:(i‘f) + (‘;_i") + (f,_, % + f %ii) :|

=%[(1+fm}(j—;) + fmfw( )(Zf)””f’?)(%)z}

P. 04/05
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dv  d%%x, d% de\* . dzdy dy d%z
(b)a_ﬁ_ﬁl+ dt:’J+ [fu('a;) + 2fuy — aEdl +fw(E) +fe o diz +-f1' dt‘ k
(€)Ifz = 2% + 4%, where = tcost and y = #£sint, then z = fz,y) = £°.

r=tcosti+tsinti+tk = v = (cost—tsint)i+ (sini--icost)j+ Ak,

K= %[(COH —tuint)? + (sint + teost)® + (207 = %(1 + 1% 4+ 48%) = %(1 + 5t%), and

a‘= (—2sint —toost)i+ (Reost — tent)j 4 2k Notice that it is casier not to vse the formulas in ;v and (b),

P. 05/05






