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Substitutions in Multiple Integrals
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This section shows how 1o evaluate multiple integrals by substitution. As in single
integration, the goal of substitution is to replace complicated integrals by ones that are
easier to evaluate. Substitutions accomplish this by simplifying the integrand, the linits
of integration, or both.

Substitutions im Double Integrals

The polar coordinate substitution of Section 15.3 is a special case of 4 more general gub-
stitution method Tor double integrals, a method Lhat pictures changes in variables as trans-
formations of regions.

Suppose that a region G in the wu-plane is itansformed one-to-one into the region Rin

the xy-plane by equations of the form
x = z(u, v), ¥ = h(u, v),

as suggested in Figure 15.47. We call & the image of G under the transformation, and G

the preimage of R. Any function f{x, ») defined on K can be thought of as a function .

e i
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F(g(uts v), h(u, v)) defined on G us well. How is the integral of f(x, y) over R related to the

intesral of f(g(. v), h(u, vY) over G?
The answer is: If g, £, and f have continuous partial derivatives and Ju, u) {10 be

o .

Jdiscussed in a moment) is zero only at jsolated points, if at all, then

/] flx, yydedy = ]] Fle(, v), hu, ©)) | v)|du duv. (1)
o

X
The factor J(x, u), whose absoluts value appears in Equation (1), is the Jacobian of
oofurmation, named after Gernan mathematician Carl Jacobi. It meas-

the coordinate transformabion,
ures how much the transformation is expanding ot contracting the area around a point in &

i HISTORICAL BIOGRAPITY
Crart Gustav Jacob facobi

. (1804—1851) : c ;
L ‘ s (7 is transformed into R.

Defipition  Jacehian
The Jacobian deferminant or Jacobian of the coordinate tranaformation

x=gluy,w),y = Alu, w) s

o x
du ov| oaxdy 8 dx

Hav) =g o) = oud " Eiow @
du  au

The Jacobian is also denoted by

_Axy)
i ) S, ) = au, 1)

Captesian to help remember how the determinant in Equation (2) is constructed from the partial
artesian go-plane Lo - . L
derivatives of x and v. The derivation of Equation (1) 18 intricate and propetly belongs to a
course in advanced calculus. We do not give the derivation here.
For polat coordinates, we have 7 and 8 in place of w and v. With x =7 cos @ and

y = rsinf, the Jacobian is

x = gl )
¥ = hi, ¥)

B ix
dr af cos® —rsinf '
Jir, 8) = = U = Heos? 0 o+ s B) = 1
Jr, 8) E}X ay sin f# rcos@ rlcos sin” B) = 1
ar af

Hence, Bquation (1) becomes

/ flx, y) dbx dy

R

U

Curtesiag xy-plune [/ f(rcasd, rsin 8)|rcrd
'FIGURE 15.47 The equations g
fx= gl w) and y = Alu, v) allow uk to
+thange an integeal over a region R in the

% pu-plane into an integral over a region & in
he ry-plane.

1

// f(rcos @, rsin 6) rdrdf, lirssd (3
"G

which is the equation found in Section 13.3.
Figure 15.48 shows how the equations x = rcosé, y = rsinfl transform the rectan-
pleG: 0= pr=10=0=m/2 into the quarter circle R bounded by x? 4 y? = linthe

first quadrant of the xy-plane.
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7 Notice that the integral on the right-hand side of Equation (3) is not the integra] of
f(rcos 8, rsin ) over a region in the pelar coordinate plane. Tt is the integral of f,
product of f{r cos 8, r sin 8) and r over a region G in the Cartesi 1 ri-plane.

Here is an example of another substitution.

Y

]

EXAMPLE 1  Applying a Transformation to Integrate

Evaluate
AR A — g
[ = dx dy
Jo J.\:='J=/2 -
0 1 o by applying the transformation
Cartesian résplang v— v ¥
| WETET e VT2 )
l x=rcosfl
y=rsinf and integrating over an appropriate region in the wu-planc.
y Solution We zketch the region R of integration in the xy-plane and identifly its bound-
aries (Figure 15.49).
=T
=3
” x=u+70 ¥
y 2w 1 y=+#
% 4+ .,
; =0 .1 w=0
0 yadx—2

Caitesian xy-plane

Y

|
w0

FIGURE 15.48 The equations x =
rcosf, y = rain# transform G into K.

] l‘ \
y=

FIGURE 15.4% The equations x = v -+ v and y = 2v transform & into
R. Reversing the ransformation by the equations u = (2 — »)/2and
v = p/2 iransforms R into G (Exampls 1),

To apply Equation (1), we need to find the corresponding ww-region G and the
Jacobian of the transformation. To find them, we first solve Equations (4) for x and p in
terms of w and . Routine algebra gives

r=utv  y=2w (3)

We then find the boundaries of & by substituting thesc expressions into the equations for
the boundaries of & (Figure 15.49),

xy-equations for Corresponding wp-equations Simplified
the boundary of B for the boundary of & pro-eguations
x=y/2 1 '&'UE?-."J/Z:U “=O
x=(p/2) + 1 u+wu=s(2v2)+1=vtl u=1
y =0 2u=10 v=>0
2

—_—

y=4 . 2v=14 u=
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The Jacobian of the transformation (again from Equations (5)) 1%

|ax g—x\s\

o
()

D) 2w+

Tt w) = ju au _ It 1| 5
v ay ay ..3_(2 ) i.(z : 1 2‘ .
Au du Bu Y Y
We now have everything we need to apply Equation (1):
ro a2 2y — I-u=2 /'u=l
dxdy = 2| S, v i dv
S .Ix:yﬁ 2 4 JTJ=D .Iu=0 a l
S 2 1 3
= / j (3(2) du dv = / {u:] du =] du = 2.
JOJO g 3] a '

EXAMPLE 2 Applying a Transformation to Integrate

Bvaluate

| | —x
/ Vx + y(y — 2x) dydx.
B

J0O

Solution  We skerch the region R of integration in the xy-plane and identify its bound-
aries (Figure 15.50). The integrand suggests the (ransformarion u =X T ¥ and
v = y — 2x. Routine algebra produces x and y as functions of u and w:

_u_ v _u v
¥=3 73 3 T3 (6)

From Equations (6), we can find the boundaries of the uv-region G (Figure 15.50).

! xy-equations for Corresponding yv-equations Simplilied
the boundary of R for the boundary of & py-equations
" x+y=1 | ¥_o¥) 4 Qﬂ+g =1 u=1
A3 3 3 3)
) B . _ x=0 B.V0=09 v=u
3 IGURE 15,50 The equations.x = 3 3
- R f3) — (u/3)endy = (2u/3) + (vf3) Iu v
. frangform €7 into £, Reversing the y=0 R 0 v = —2u
] wansformation by the equations w = x + ¥
and v = y — 2x transforms R into G
‘ (Example 2). , The Jacobian of the transtarmation in Gquations (6) is
aoax| |1 .1
b M dw 3 3 1
‘ hv) = gy ay T2 1 Ty
du dv 3 3
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Applying Equation (1), we ovaluate the integral:

C = T e
jﬁ jo VX LY Lk )T G X _,u—u Ju=_2”w L

1 f'w 2.2 (1) ) -l-/'l 2 [1 3:l1mu y
' o |- |dudu == uwt|guv i
.Z]‘ _/-:’.u 3 3 1] 3 p=—2u
! |

R AT 2 | -
i il — 9 123 ln

WO

Substitutions in Triple Integrals

The cylindrical and spherical coordinate substitations in Section 15.6 are special cases of 2
substitution method that pictures changes of variables in triple integrals as transformarions
of three-dintensional regions. The method is like the method for double ntegrals excep
that now we work in three dimensions instead of twa.

Suppose that a region G in wunw-space is transformed one-to-one into the region D in
xyz-space by differentiable cquations of the form

x = glu, v, w), ¥ = h{u, v, w), 3z = klu, v, w),
ag suppested in Figure 15.51. Then any function F(x, y, z) defined on D can he thought of
as a funeton
Fglu, v, w), i{a, v, w), kv, w)) = Hu, v, w)

defined on G. If g, A, and & have continuous first partial derivatives, then the integral of
F(x, y, z) over D is related to the integral of H(u, v, w) over G by the equation

/// Flx,y, =) dodydz = /// H(u, v, w)|J(, v, w) | i du dw. (7)
b i

w z
X = glu, v, w)
¥ = AL, v, w)
7= ki, vy w)
—_—

O

- ™
H Cartesian wuw-spuce x Cartesian & yo-5pacs

FIGURE 15.51 The eyuations x = glu, v, w), 1 = Alw, v, w), and
=z = kln, v, w) allow us to change an integral over a region D in Cartesiun
Xyz-spacc into an integral over a region ' in Cartesian wuw-space,
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Cube with sides
parcallel to the

-
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5]

7

r Curiesion riz-spuce

x=rcosfh
¥y=rsind

-

7 = gonslant
==

7

F = gonstant

A = consiant ¥

x Cartesian ryz-spuce

* FIGURE 15.52 The cquations
cx=reonf, ¥ = rsing,andz = =

" transform the cube (7 into a cylindrical
o wedge 0,

16.7 Substitutions in Multiple Integrals 1117

The factor J(u, v, w), whose absolute value appears in this equation, is the JacolHan
determinant

dx  Ax dx
gy gu  dw

gy dy Ay Ax, p, 7)

Jou,v,w) =

Bu dv aw|  a(u v, w)
dz Bz dz
du dn  aw

This determinant measures how much the volume near a point n G is being E?cpa.nded or
contracted by the transformation from (u, v, W) to (%, ». z) coorr;mates. 2_\5 in tl?e two-
dimensional case, the derivation of the change-of-variable formula in Equation {7) s com-
plicated and we do not go into it here, A
For cylindrical coordinates, r, 8, and z take the place of , v, and w. The transforma-
tion from Cartesian rfz-space to Cartesian xyz-space is given by the equations
x = rcoafl, = rsinf, =z

(Figure 15.52). The Jacobian of the transformation is

oo o
ar o8 oz . |
ar 3 3 cosf =—rusmf O
ry y : .
Sr, 8,2} = a—{ 0 3z = |56 reos@ O
0 0 1
M af oz

= rcogtf - FEintd =7

The corresponding version of Equation (7) is

[// Flx,y,z) dedvdz = /] H{r,0,z)|r|drdf dz.
D } [

We can drop the absolule value signs whenever r & 0.
For spherical coordinates, p. ¢, and € take the place of u, v, and w, The transforma-
tion from Cartesian pepf-space to Cartesian xyz-space is given by

x = psingcosd, y= psindsind, z~ peosd
(Figure 15.53). The Jacobian of the transformation i8
ax  dx Ox
ap A af
I ) R
J(P, (:ba B) - .éE be Y] =p 5].r|.¢

Ji 5 s -4

ap  dp 08

P. 02/04
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{(Exercise 17). The corresponding version of Bquation (7) 18
frf o " ) .
j// Flx,y,r)dedydz = jl/f Hip, ¢, 0)|p* sin ¢|dp deb db.
- o
We can drop the absolute value signs because sin ¢ is never negative for 0 = ¢ = x.

Note that this is the same result we abtained in Section 15.6.

Cuhe with sides f = congetant

parallel to the
g coordmaie axes

# = constanl

D

x = phingeond
v = phingsind
2o poned ¢ = constant

it

n Cartesian pepl-space x Carlesian xyz=5pace

FIGUWE 15.53 The equations x = p sin i cosfl,y = psindsinf, ansl
= = pcos ¢ transform the cube & into tho spherical wedge D

Here is an example of another substitution. Alfhough we could evaluate the integral in

i=u-+v ) s X j
y=u this example directly, we have chosen it to illustrate the substitution method in a simple
z=3w (and fairly intuitive) setting.

EXAMPLE 3 Applying a Transformation to Integrate

Rear plane: Evaluate

LY
x 2 goory =2 3 P4 pam Oy — =
, [ (s gess
A Jo Jo Jr=yiz 2

by applying the transformation

' u = (2x — ¥)/2. ve=yp/2, w=gz/3 (8)
i
/ ; Pans and integrating over an appropriate region in wuw-Rpace,
. :
F"—‘"‘yl"‘“"“: solution  We sketch the region D of integration in xyz-space and identify its boundaries
x=g +Loery= 2x-12 (Figure 15.54). In this case, the bounding surfaces arc planes.
To apply Baquation (7), we need to find the corresponding wuw-region G and tl'lm
FIGURE 16.54 The equations Jacobian of the transformation. To find tham, we first solve Equations (8) for x, 3 and = In
x=u+ v,y ="2vmdz= 3w terme of w, v, and w. Rouiine algebra gIves

ransform € into D. Reversing the
tramsformation by the equations

= {2x — y)j2,v = ¥/2;and w = z/3 We then find the boundaries of G by substituting these expressions into the equation for
tranglorms D into G (Example 3). the boundaries of I '

x=u-tmv, ¥ = 2v, £ = 3w, (8)
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xyz-edquations for Corresponding wvw-equations Simplilied

the boundary of D for the boundary of & avw-equations
x = y/2 utv=2u2=v u=20
x = (y/2) +1 wdy=2u+1=v+1 u=1
y= 0 2v=10 v =10
y=+4 2u=4 w=2
z2=10 ‘ w =10 w=10
z=3 Iw =13 we=1}

The Jacobian of the transformation, again from Equations (9), 12

ax A B
dy dp  ow

dy dy dy

Huw oo W) = |3, 0w

Il
[ T
T S
[FUR o I -]
1
=0

dz 4z Oz
du  du  dw

We now have everything we need to apply Equation (7):

34 pr=(p/200 Moy -y .
LI (2 )
Jo Jo Jr=yp2 2
Lop2 o
= / f / (1e + w)|S(u, v, w)|du dv dw
Jo Jo Jao
d e 1 /20,2 1
= ] j ] {u + w)B)dudvdw = 6/f l%- -+ uw} dv dw
a Jo Jo 0 Jo a
1 2 1 | -U 2 |
=5ff (E'I'W)d‘tldw=6/ \»E-‘t-uw] dw=6/ (1 + 2w) dw
o Jo Jo 0 Jo

= 6[w + Wi = 6(2) = 12 .

The goal of this section was to introduce you to the ideas involved in coordinate transfor-
mations. A thorough discussion of transformations, the Jacobian, and multivariable substi-
tution is best given in an advanced calculus course afier a study of linear algebra.

P. 04/04



