Test 2	Name:
Dusty Wilson	
Math 111 – Fall 2009	Seeing there is nothing that is so troublesome to mathematical practice, nor that doth more molest and hinder calculators, than the
No work = no credit	multiplications, atvisions, square and cubical extractions of great numbers I began therefore to consider in my mind by what certain and ready art I might remove those hindrances.
Closed Book & Closed Notes	John Napier (1550 - 1617) Scottish mathematician
Warm-ups (1 pt each) $-4^2 = $	$3^0 = $ $\frac{5}{0} = $

1.) (1 pt) The quote by Napier (see above) explains why he invented the logarithm. Why was the logarithm invented? Answer using complete sentences.

2.) (2 pts) A radioactive isotope is said to decay over time. That is, after t years, the original amount of an isotope, N_0 grams, decays until the amount is N grams, where N is defined as

 $N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{200}}$. How much of this isotope, in terms of N_0 , remains at time t = 600?

Solution: _____

3.) (2 pts) Solve the exponential equation $3^{2x+1} = 27$ for *x*.

Solution: _____

4.) (2 pts) Use properties of logarithms to rewrite $\log_b \left(\frac{17x^5}{y^{12}}\right)$ as an expression with three terms and no exponents.

Solution: _____

5.) (2 pts) Suppose that you have a formula to measure the loudness of sounds on a logarithmic scale. You do not know what base to use for your logarithms, but you have determined by experiment that $\log_b 2 = 3.4$ and that $\log_b 3 = 5.4$. Use this information and properties of logarithms to calculate $\log_b 24$.

Solution: _____

6.) (2 pts) Use properties of logs to rewrite $\log 5 - \log 2x + 2\log(x-2)$ as a single logarithm.

Solution: _____

7.) (2 pts) Use a calculator to approximate $\log_{13} 230$ to two decimal places.

Solution: _____

Page 2 of 5

8.) (2 pts) Solve $\log_3(2x-2)-1 = \log_3 8$ for *x*.

Solution: _____

9.) (2 pts) Solve $6^x - 5 = 17$ for *x*. Round your answer to two decimal places.

Solution: _____

10.) (3 pts) Find the constant term, leading coefficient, and degree of the polynomial function $P(x) = 17 - 5x^2 + 13x^5 - 14x^7 + 8x^6$.

Constant term: _____ Leading coefficient: _____ Degree: _____

11.) (2 pts) Graph the polynomial function $y = P(x) = 4x - x^3$ without a graphing calculator (although you can use the calculator to check).

12.) (6 pts) Consider the function $f(x) = \frac{6x^2 - 54}{(x-4)(x+2)}$.

find the matrix 2A - 3B and the matrix $A \cdot C$.

2*A*-3*B*:_____

A · C : _____

14.) (2 pts) Find the infinite sum, S_{∞} , of this geometric sequence: 81, 27, 9, 3, ...

15.) (4 pts) Use the Gauss-Jordan Method to solve the following system of linear equations:

x + y + z = 63y - 3z = -182y + z = 3

Solution: _____

16.) (4 pts) Find the twenty-fourth term, a_{24} , and the sum, S_{24} , of the first 24 terms of the following arithmetic sequence: 3, 7, 11, 15, 19, ...

*a*₂₄:_____

*S*₂₄:_____

17.) (2 pts) Which expression below represents S_{24} , the sum of the first twenty-four terms of the geometric sequence -2, 8, -32, 128, ... Circle one

a.)
$$-2+(24)(-4)$$

b.) $\frac{-2(1-4^{24})}{1-4}$
c.) $\frac{-2(1-4^{24})}{4-1}$
d.) $\frac{-2[1-(-4)^{24}]}{1-(-4)}$