Name:

The last thing one knows when writing a book is what to put first.

> Blaise Pascal (1623 - 1662) French mathematician

No work = no credit

Closed Book & Closed Notes

Warm-ups (1 pt each)

$$(-3)^2 =$$
 $-3^2 =$ -9

$$-3^2 =$$

$$\frac{0}{5} =$$

1.) (1 pt) According to the quote by Pascal (see above), what is the last thing written in a book? Answer using complete sentences.

The beginning is the last thing uniten.

2.) (2 pts) Solve 2x-10 = 4-2(x+2) exactly.

2x-10 = 4 - 2x - 44x = 10

Solution:
$$\chi = \sqrt[5]{2}$$

3.) (2 pts) Solve $x^2 + 10x + 10 = 0$ exactly.

 $\Rightarrow X = \frac{-10 \pm \sqrt{100 - 4(1)(10)}}{}$

$$3 \times = \frac{-10 \pm \sqrt{60^{\circ}}}{2}$$

Solution:
$$X = -5 \pm \sqrt{15}$$

4.) (2 pts) Solve $(2x-1)^2 - 30 = 0$ exactly.

= $(2x-1)^2 = 30$

=> 2x = 1 = 120

Solution: X =

5.) (2 pts) Solve the inequality 5x + 3 > 4(1-x). Express your answer in interval notation.

Solution:
$$(1/9, \infty)$$

6.) (2 pts) Solve $|1-2x| \le 7$. Express your answer in interval notation.

$$3$$
 8 3 3 3 3 3 Solution: $[-3, 4]$

7.) (4 pts) Express the following expressions in the standard z = a + bi form of a complex number.

a.) (2 pts)
$$(2-3i)+(-1+4i)$$

b.) (2 pts)
$$\frac{2-3i}{5+i}$$
 * $\frac{5-i}{5-i}$
 $\frac{10-2i-15i+3i^2}{25-i^2}$

Solution:
$$\frac{2}{26} - \frac{12}{26}$$

8.) (2 pts) Find the distance between the two points (-3,6) and (0,-4).

9.) (2 pts) Find the equation of the line with slope 6 and y-intercept (0,-13). Write your answer in slope-intercept form.

Solution:
$$4 = 6 \times -13$$

10.) (2 pts) Find the slope and the y-intercept of the line 5x + 2y = 15

$$\frac{2y_2 - 5x + 15}{4^2 - \frac{5}{2}x + \frac{15}{2}}$$
 Slope: $\frac{-\frac{5}{2}}{3}$ and y-intercept: $\frac{\frac{15}{2}}{3}$

11.) (2 pts) Find the equation of the line parallel to the line 3x-4y=10 that passes through the point (6,0). +4 = +3x +10

$$y = \frac{2}{4}x - \frac{5}{2}$$
 $-3x + 4y = -18$
Same slope: $3/4$ $y = \frac{2}{4}(x-6)$

Solution:
$$y = \frac{3}{4} \times -\frac{9}{4}$$

12.) (1 pt) Is the function $g(x) = x^2 - 1$ a one-to-one function? YES NO

13.) (2 pts) Given the function $h(x) = x^2 + 3x$, find h(-5)

$$h(45) = (-5)^{2} + 3(-5)$$
Solution:

14.) (2 pts) Find the vertex of the function $f(x) = x^2 - 3x - 10$.

$$f(\frac{2}{2}) = \frac{9}{4} - \frac{9}{2} - 10$$

$$= \frac{9 - 18 - 40}{4}$$
Solution: $\left(\frac{3}{2}, -\frac{49}{4}\right)$

$$= \frac{9 - 18 - 40}{4}$$
Page 3 of 5

15.) (5 pts) For the given graphs, clearly check "X" all that apply

Name and Address of the Owner, where	-		4			Ì.	ĺ			
stomsovoc	Anna Carlo	-	NO.			 		F		
· ·	jenera von								*****	
A.	-		-		-	i i		-		
				-00/7440-0	AVAMMAY					٠,
			Norweign.				30-114-0-12 			entry.
		*								
	}					 	1	1	202.21110	

Clearly check "X" all that apply	A	В	C	D	E	F
a.) The line has a positive slope.				X	X	
b.) The line has a non-negative slope.	-		X	X	X	
c.) The line has a y-intercept of 3.			X			X
d.) The line has a slope of $-\frac{1}{3}$.	X					X
e.) The <i>x</i> -intercept is -1 .	X				X	

16.) (2 pts) Given h(x) = 3x - 5, find and simplify the <u>equation</u> of $h^{-1}(x)$.

$$3 \quad x + 5 = 3 \quad y$$

$$3 \quad y = \frac{x+5}{3}$$

Solution:
$$\frac{y^2}{3} = \frac{x+5}{3} = \frac{1}{3} =$$

17.) (2 pts) Use the given graph of g(x) to answer the following questions. Give answers in interval notation.

18.) (2 pts) Given
$$f(x) = 6x^4$$
 and $g(x) = 3x^3$, find $\left(\frac{f}{g}\right)(x) - (f \cdot g)(x)$

Solution: (4)(x) = (4)(x) =

19.) (2 pts) Given
$$f(x) = -6x + 5$$
 and $g(x) = -x^2 - 2$, evaluate $(f \circ g)(4) = f[g(4)]$

$$g(4) = -16 - 2 = -16$$

$$f(g(4)) = -16 - 2 = -16$$

$$f(g(4)) = -16 - 2 = -16$$

Solution: 13

20.) (2 pts) The graphs of y = f(x) and y = g(x) are given. Use these graphs to find $(f \circ g)(2) = f \lceil g(2) \rceil$

$$g(1) = 1$$

 $f(g(1)) = f(1) = 3$

Solution: — 3

