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constraints

Feasible Regions
and Solutions
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Linear programming is widely used by businesses for problems that involve many variables
(sometimes more than 100). In this section we begin our study of this important technique
by considering problems nvolving two variables. With two variables we can use graphical
methods to help solve the problem. The constraints form a system of linear inequalities in
two variables that we can solve by graphing. The solution of the system of constraint
inequalities determines a region, any point of which may yield the optimal (maximum or
minimum) value for the objective function.* Hence any point in the region determined by
the constraints is called a feasible solution, and the region itself is called the feasible
region. In a linear programming problem, we seek the feasible solution that maximizes (or
minimizes) the objective function.

@ EXAMPLE 1 Profit Maximization (Application Preview)

A farm co-op has 6000 acres available to plant with corn and soybeans. Each acre of corn
requires 9 gallons of fertilizer/herbicide and 3/4 hour of labor to harvest. Each acre of soy-
beans requires 3 gallons of fertilizer/herbicide and 1 hour of labor to harvest. The co-op
has available at most 40,500 gallons of fertilizer/herbicide and at most 5250 hours of labor
for harvesting. If the profits per acre are $60 for corn and $40 for soybeans, how many
acres of each crop should the co-op plant in order to maximize their profit? What is the
maximum profit?

Solution
Recall from Example 4 in Section 4.1 that if x is the number of acres of corn and y is the
number of acres of soybeans, then the constraints for this farm co-op application can be
written as the following system of inequalities.
x+ y= 6,000

9x + 3y = 40,500
3 ,
i + y= 5250

x=0,y=0

*The region determined by the constraints must be convex for the optimal to exist. A convex region is one such
that for any two points in the region, the segment joining those points lies entirely within the region. We restrict
our discussion to convex regions.
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Profit = £ = 6Ux + 40y  (in dollars)

Thus the linear programming problem for the co-op can be stated as follows.

Maximize Profit P = 60x + 40y
Subjectto: x+ y= 6,000
9x + 3y = 40,500

3
—x+ y= 5250
2 )

cxz0,y=0

The solution of the system of inequalities, or constraints (found in Example 4 in Section 4.1),
forms the feasible region shaded in Figure 4.9(a). Any point inside the shaded region or
on its boundary is a feasible (possible) solution of the probiem. For example, point A
(1000, 2000) is in the feasible region, and at this point the profit is P = 60(1000)
+ 4002000) = 140,000 dollars.

To find the maximum value of P = 60x + 40y, we cannot possibly evaluate P at every
point in the feasible region. However, many points in the feasible region may correspond
to the same value of £ For example, at point A in Figure 4.9(a), the value of P is 140,000
and the profit function becomes

60x + 40y = 140,000
or

140,000 — 60x
y T —

3
= 3500 — >
40 2"

The graph of this function is a line with slope m = —3/2 and y-intercept 3500. Many points
in the feasible region lie on this line (see Figure 4.9(b)), and their coordinates all result in
a profit = 140,000. Any point in the feasible region that results in profit P satisfies

P = 60x + 40y
or

P — 60x P 3
IO -

y = —
’ 40 40 2

In this form we can see that different P-values change the y-intercept for the line but the
slope is always m = —3/2, so the lines for different P-values are parallel. Figure 4.9(b)
shows the feasible region and the lines representing the objective function for P = 140,000,
P = 315,000, and P = 440,000. Note that the line corresponding to P = 315,000 intersects
the feasible region at the point (3750, 2250). Values of P less than 315,000 give lines that
pass through the feasible region, but represent a profit less than $315,000 (such as the line
for P = 140,000 through point A). Similarly, values of P greater than 315,000 give lines
that miss the feasible region, and hence cannot be solutions of the problem.

Thus, the farm co-op’s maximum profit, subject to the constraints (ie., the solution of
the co-op’s linear programming problem), is P = $315,000 when x = 3750 and y = 2250.
That is, when the co-op plants 3750 acres of corn and 2250 acres of soybeans, it achieves
maximum profit of $315,000:
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Figure 4.9

Notice in Example 1 that the objective function was maximized at one of the “corners”
(vertices) of the feasible region. This is not a coincidence; it turns out that a corner will
always lie on the profit line corresponding to the maximum profit.

Suppose in Example 1 that the objective had been to maximize P = 80x + 20y over

P
the same constraint region. Then the graphs of P = 80x + 20y, or y = 0 4x, for

P = 200,000, P = 360,000, and P = 500,000 would result in the lines shown in Figure
4.9(c). Notice that the corner (4500, 0) is the only feasible point where P = 360,000. This
figure also shows that any P-value greater than 360,000 will result in a line that misses the
feasible region and that any other point inside the feasible region corresponds to a P-value
less than 360,000. Thus the maximum value is P = 360,000 and it occurs at the corner
(4500, 0). Note in both cases the objective function was maximized at one of the “corners”
of the feasible region.

The feasible region in Figure 4.9 is an example of a closed and bounded region because
it is entirely enclosed by, and includes, the lines associated with the constraints.

Thus, for a closed and bounded region, we can find the maximum or minimum value
of the objective function by evaluating the function at each of the corners of the feasible
region formed by the solution of the constraint inequalities. If the feasible region is not
closed and bounded, we must check to make sure the objective function has an optimal
value. ‘

The steps involved in solving a linear programming problem are as follows.
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Procedure Exarmipie
To find the optimal value of a function subject to Find the maximum and minimum values of C = 2x + 3y
constraints: subject to the constraints '
x+ 2y =10
2+ y=14
x=0,y=0
1. Write the objective function and constraint inequali- 1. Objective function: C = 2x + 3y
ties from the problem. Constraints: x + 2y = 10
2+ y=14

x=0,y=0

2. Graph the solution of the constraint system. 2. The constraint region is closed and bounded. See
(a) If the feasible region is closed and bounded, Figure 4.10.
proceed to Step 3. y

(b) If the region is not closed and bounded, check
whether an optimal value exists, If not, state this.
If so, proceed to Step 3.

Figure 4.10

3. Find the corners of the resulting feasible region. This 3. Corners are (0, 0), (0,5), (6,2), (7,0).
may require simultaneous solution of two or more
pairs of boundary equations.

4. Bvaluate the objective function at each corner of the 4. At (0,0), C=2x+ 3y =2(0) +30)= 0

feasible region determined by the constraints. AL (0,5), C = 2x + 3y = 2(0) + 3(5) = 15
At (6,2), C = 2x + 3y = 2(6) + 3(2) = 18
At(7,0), C=2x +3y=27) + 30) = 14

5. If two corners give the optimal value of the objective 5. The function is maximized at x = 6,y = 2. The
function, then all points on the boundary line joining maximum value is C = 18.
these two corners also optimize the function. The function is minimized at x = 0,y = 0.

The minimum value is C = 0.

@ EXAMPLE 2 Moximizing Revenue

Chairco manufactures two types of chairs, standard and plush. Standard chairs require
2 hours to construct and finish, and plush chairs require 3 hours to construct and finish.
Upholstering takes 1 hour for standard chairs and 3 hours for plush chairs. There are
240 hours per day available for construction and finishing, and 150 hours per day are avail-
able for upholstering. If the revenue for standard chairs is $89 and for plush chairs is
$133.50, how many of each type should be produced each day to maximize revenue?




Figure 4.11

constraints for construction and finishing (no more than 240 hours/day) and for upholster-
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ing (no more than 150 hours/day). Thus we have the following.

Construction/finishing constraint:  2x + 3y = 240
Upholstering constraint: ~ x + 3y = 150
Because all quantities must be nonnegative, we also have the constraints x = 0 and y = 0.
Thus we seek to solve the following problem.
Maximize R = 89x + 133.5y subject to
2x + 3y = 240
x + 3y =150
x=0,y=0
The feasible set is the closed and bounded region shaded in Figure 4.11. The corners of the
feasible region are (0, 0), (120, 0), (0, 50), and (90, 20). All of these are obvious except
(90, 20), which can be found by solving 2x + 3y = 240 and x + 3y = 150 simultaneously.
Testing the objective function at the corners gives the following. ‘
At(0,0), R =89x + 133.5y = 89(0) + 133.5(0) = 0
At (120, 0), R = 89(120) + 133.5(0) = 10,680 ]

Maximum at
two corners

At (0,50), R = 89(0) + 133.5(50) = 6675
At (90, 20), R = 89(90) + 133.5(20) = 10,680 «

Thus the maximum revenue of $10,680 occurs at either the point (120, 0) or the point
(90, 20). This means that the revenue function will be maximized not only at these two cor-
ner points but also at any point on the segment joining them. Since the number of each type
of chair must be an integer, Chairco has maximum revenue of $10,680 at any pair of inte-
ger values along the segment joining (120, 0) and (90, 20). For example, the point (105, 10)
is on this segment, and the revenue at this point is also $10,680:

89x + 133.5y = 89(105) + 133.5(10) = 10,680
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Figure 4.12

Although the examples so far have al] involved closed and bounded regions, similar pro-
cedures apply for an unbounded region, although optimal solutions are no longer guaranteed,

® EXAMPLE 3 Minmimization
If possible, find the maximum and minimum values of C = x + ¥ subject to the constraintg

x+2y=12

X+ 3y=11

x=0,y=0
Solution
The graph of the constraint system is shown in Figure 4.12(a). Note that the feasible region
is not closed and bounded, so we must check whether optimal values exist. This check is
done by graphing C = x + y for selected values of ¢ and noting the trend. Figure 4.12(b)

shows the solution region with graphs of C = x + y for C = 3,C=5,and C = 8. Note
that the objective function has a minimum but no maximum.,

¥
8 —=:(0,.6) -
5
64 N, —

‘1(2,.‘) O

The corners (0, 6) and (11, 0) can be identified from the graph. The third corner, (2, 3), can
be found by solving the equations 3x + 2y = 12 and x + 3y = 11 simultaneously:

I+ 2y= 12

—3x — 9y = —33

~=T7y = =21
y=3

x=2
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AL, 6), C=aty= o
At(11,0), C=x+y=11
At (2,3), C=x+y= 5

I

Thus, we conclude the following:
Minimum value of C = x + yis 5at(2,3).
Maximum value of C = x + y does not exist.

Note that C can be made arbitrarily large in the feasible region.

2. Find the maximum and minimum values (if they exist) of the objective function
& = 3x + 4y subject to the following constraints.

x+2y=12, x=0
3x+4y=30, y=2

@ EXAMPLE 4 Mwwmmwg Production Costs

Two chemical plants, one at Macon and one at Jonesboro, produce three types of fertilizer,
low phosphorus (LP), medium phosphorus (MP), and high phosphorus (HP). At each plant,
the fertilizer is produced in a single production run, so the three types are produced in fixed
proportions. The Macon plant produces 1 ton of LP, 2 tons of MP, and 3 tons of HP in a
single operation, and it charges $600 for what is produced in one operation, whereas one
operation of the Jonesboro plant produces 1 ton of LP, 5 tons of MP, and 1 ton of HP, and
it charges $1000 for what it produces in one operation. If a customer needs 100 tons of LP,
260 tons of MP, and 180 tons of HP, how many production runs should be ordered from
each plant to minimize costs?

Solution
If x represents the number of operations requested from the Macon plant and y represents
the number of operations requested from the J onesboro plant, then we seek to minimize cost

C = 600x + 1000y

The following table summarizes production capabilities and requirements.

Macon Jonesboro

Plant Plant Requirements
Units of LP 1 1 100
Units of MP 2 5 260
Units of HP 3 1 180

Using the number of operations requested and the fact that requirements must be met
or exceeded, we can formulate the following constraints.
x+ y=100 .
2x + 5y = 260
3x+ y=180
x=0,y=0

Graphing this system gives the feasible set shown in Figure 4.13. The objective func-
tion has a minimum even though the feasible set is not closed and bounded. The corners
are (0, 180), (40, 60), (80, 20), and (130, 0), where (40, 60) is obtained by solving x + y = 100
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Figure 4.13

Figure 4.14
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Evaluating C = 600x 4+ 1000y at each corner, we obtain

At (0, 180), C = 180,000
At (40, 60), C = 84,000
At (80, 20), C = 68,000
At(130,0), C = 78,000
Thus, by placing orders requiring 80 production runs from the Macon plant and 20 pro-

duction runs from the Jonesboro plant, the customer’s needs will be satisfied at a minimum
cost of $68,000.

@ ExaA PLE 5 Mdﬁ?ﬁ}mﬁuw Subject to Constraints

Use a graphing utility to maximize f = 5x + 11y subject to the constraints

S5x + 2y = 54
T 2x 4+ 4y =60
x=0,y=0

Solution

We write the inequalities above as equations, solved for y. Graphing these equations with
a graphing calculator and using shading show the closed and bounded region satisfying the
inequalities (see Figure 4.14). By using an INTERSECT command with pairs of lines that
form the borders of this region, we see that the boundaries intersect at 0, 0), (0, 13), (6, 12),
and (10.8, 0). These points can also be found algebraically. Testing the objective function
at each of these corners gives the following values of f

At(0,0),  f=5x+1ly=0

At(0,15),  f=5x+ 11y = 165
At(6,12), f=5x+ 11y =162
At(108,0), f=35x+ 1ly = 54

The maximum value is /= 165 at x = 0,y = 15.
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v Chethpoint Sciutivns P The values of [ at the corners are

as {ollows

At(2,0), f=38
At(3,2), f=12+6=18

At(0,4), f=12

The maximum value of fis 18 at x = 3,y = 2, and the minimum value is f=0a
x=0,y = 0.

2. The graph of the feasible region is shown in Figure 4.15. The values of £ at the corners
are found as follows:

S

AL(0,7.5), g =30
o At(6,3), g=18+12 =30
NG AL At(8,2), g=24+8=13)

‘ ‘ /:;, 4 6 8 10 12 1a
. 2y=12
Figure 4.15 =l

The minimum value of g is 30 at both (0,7.5) and (6, 3). Thus any point on the border
Joining (0, 7.5) and (6, 3) will give the minimum value 30. For example, (2, 6) is on this

. border and gives the value 6 + 24 = 30. The maximum value of g does not exist; g can
be made arbitrarily large on this feasible region.

In Problems 1-6, use the given feasible region determined
by the constraint inequalities to find the maximum and
minimum of the given objective function (if they exist).
. C=2x+ 3y 2. f=6x+4y
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4. C=4x+ 7y
]

o (8,6)

O

# ¥ s PEIFEN
¢l ind the maximum and minimum of the give

i

n objec-
tive function (if they exist).
7. f=3x+2
y

8. f=5x+ 38y

y 4x+y =140
/

I emma)

")
!x+y=40

10. g = x + 3y
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grarl mming probiem ¢ : gsible regions for
these problems are found in the answers to Problems 19,
20, 23, and 24 in the 4.1 Exercises.
11. Maximize f = 3x + 2y subject to
x + 2y =48
x+ y=30
2x + y =50
x=0y=0
12, Maximize f = 7x + 10y subject to
3x+ y= 9
3x + 2y =12
x+2y= §
x=0,y=0
13. Minimize g = 12x + 48y subject to
x+3y=3
2x+3y=5
2x+ y=3
xz=0,y=0
14, Minimize g = 12x + 8y subject to
x + 2y =10
2x + y =11
x+ y= 9
x=0,y=0
In Problems 15-26, solve the following linear program-
ming problems.
15. Maximize f = 3x + 4y subject to
x+ty= 6
2x+y=10
y = 4
x=0,y=0
16. Maximize f = x + 3y subject to

x +4y =12

y=s 2
x+ y= 9
xz0,y=0

17. Maximize f = 2x + 6y subject to

x+ y= 7
2x+ y=12
x+3y=15
xz=0,y=0

19.

20.

21.

22,

23.

26.

4.2 Linear rrogramming. Graphical Methods

x+ y=12
4x + y =36
x=0,y=0
Minimize g = 7x + 6y subject to
5x + 2y = 16
3x + 7y = 27
xz0,y=0
Minimize g = 22x + 17y subject to
8x + 5y = 100
12x + 25y = 360
x=0,y=0
Minimize g = 3x + y subject to
dx + y= 11
3x+2y=12
x=0,y=0
Minimize g = 50x + 70y subject to
1ix + 15y = 225
x+ 3y= 27
x=z0,y=0
Maximize f = x + 2y subject to
x+y=4
2x +y =38
V= 4

. Maximize f = 3x + 5y subject to

2x + 4y =8
3x+ y=7
x=0,y=4

25. Minimize g = 40x + 25y subject to

x+ y=100

-x+ y= 20

—2x + 3y = 30

x=0,y=0

Minimize g = 3x + 8y subject to
4x — 5y = 50

~—x+2y= 4

x+ y=280

x=0,y=0
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