Notetaker's name	Class Date Apr. 3.9
Section q.1	
Intro to	Differen-lial Equations
Goal:	
- Model the spread	of an apidemic
& A differential Equation ((DE) is an equation that contains
an working unknown for	inction and some of its derivatives.
	Applications include
	- spread of epidemics
	- population growth
	- radioactive deray
	- free fall
	- Newton's Law of Cooling
	- Resistors and Inductors
	- Hooke's Law.
Ex:1 Paperlation Growth.	
umption: Under nice condition	ns a population growth at a rate
proportional to the s	size of the population. Population - P
P' - L.P or	drivative drivative
constant of matity	or P=xP
E-r: 2 th more genera	al population model.
	ations the population will grow at a
1 · · ·	proportional to the population size.
PAKP	amall relative
	for small p K

 \bigcirc

Notetaker's name	Class		Da	
	0.000			
not-2Z : cont	population gets	too by (P>K) .1me	to bright iou
will decrease.				
<u>JF</u>	2\$ for P>K			
K- carrying cape				
A Nifferential and	ation -that meats	hadh at	TAIM NONS is	
The outtersement redu	ation -inat inters			
	aP, $P(1 - P)$			м Р.
	$\frac{dP}{dT} = kP\left(1 - \frac{P}{K}\right)$	UN KI	nown function	<u>и Т</u>
	1 .		<u> </u>	
	un ,			
Assumptions in mo	deling rachemics			n
1) Bpale	ition is stable a	store alban	doutes the	<u>= -b epidam</u>
) Nump	in at people that	can get	sick depen	116 24
	a) Number already			
	b) Number still	-		
	e) Constant probab	-		
and the state of the	· · · ·	··· ·		
		500		
• 012				
- 121 - 123	1			
				<u> </u>
			. <u> </u>	
	· ·			
	· · · · · · · · · · · · · · · · · · ·			

Notetaker's name _____ Class _____ Date Apr. 30.00

Section 9.1 (continue) Population Models 1) $P' = k \vec{r}$ our simplest population model (ex 1 on p1) 2) $P' = k \vec{r} (1 - \frac{P}{k})$ the slightly more complex pop model (ex 2 on p1) what is the unknown that we $\xrightarrow{\text{must solve for ?}} P(+).$ other apps as DE B) Hooke's Law (spring) $\frac{F=xx}{4}$ ma = kx $\Rightarrow m \cdot x' = \kappa x \quad (might write x'' = \ddot{x})$ $\Rightarrow \ddot{x} = \frac{\kappa}{m} x \quad \leftarrow \qquad f) \quad specific \quad solution \quad is \quad x = x''$ If given a potential solution to a DE how could we test Exil Verify that y=tan(x) is a solution to to y=1+y2 $y = Sec^{2}(x)$: check: $Sec^{2}(x) = 14 + tan^{2}(x)$. and there other solutions to y= 1+ y2 $\frac{1}{y} = -\frac{1}{csc^{2}(x)} \qquad check: -\frac{1}{csc^{2}(x)} \neq 1 + rot^{2}(x)$ $\frac{1}{y_{2}} = \frac{1}{2} \frac{1}{x_{2}} \frac{1}{x$

(n)

~	•	

<u>+ast:</u> <u>y = tan (</u> <u>y = sec</u> ²	$\frac{X + F_{2}}{J} = Chrek:$	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
······································		
Method for vi	rification	
difference	setween sparific	and general solution all solutions.
3 a simple example		····
<u> </u>	s a solution	
Uz CRX	s = a = solution $\iff y = ce^{s} = yc$	eneral solution.
:4 vetify that y.		a solution to to to you a -C
-test: =- (==	$(-1)^2$	
(÷	- +()	
= `t`. =-t`y`\	$\left(\left(\frac{1}{2\sqrt{2} + C} \right)^2 \right)^2$	
When your the	ronationt C do in	(Ex:4) ?
Ex: 4 Try: Solve dy	·	
	-1hat u(0) = 2 :1	nitial condition
General Solution:	$y = \frac{1}{42}$	$\frac{y(0) = 2 = \frac{1}{0+C}}{= 7C = \frac{1}{2}}$ m is $y = \frac{1}{\frac{1}{2}+\frac{1}{2}}$

➁

w.

1.1