Limits

Section 9.1

Part 1: A Brief Review of Functions

■ Example 1: Functions and Graphs

Consider the complete graph of f(x) that is given below.

Use the graph to answer the following questions.

7	
a) $f(-10) =$	b.) $f(-7) = $
c.) $f(-2) =$	d.) $f(0) =$
e.) $f(3) =$	f.) $f(11) = $
g.) The domain of $f(x)$:	
h.) The range of $f(x)$:	

Part 2: Graphical Limits

■ Example 2: The first two pictures

(a.)

(b.)

■ Definition: The Limit

Let f(x) be a function defined on an open interval containing c, except possibly at x = c. Then

 $\lim_{x\to c} f(x) = L$

if we can make values of f(x) as close to L as we desire by choosing values of x sufficiently close to c.

If the values of f(x) do not approach a single finite L, the limit does not exist.

Notation: DNE means, "Does not exist."

Notation: We read $\lim_{x\to c} f(x) = L$ as, "The limit as x approaches c of f(x) is L."

■ Example 3: Evaluating functions vs. evaluating limits

(a.)

(b.)

(c.)

•	Example 4: Evaluating functions, left-hand and	right-hand limits	, limits, and limit	ts at
	infinity.			

(a.)

(b.)

(c.)

(d.)

(e.)

(f.)

(g.)

Part 3: Limits Algebraically

■ Example 5: Evaluate graphically

$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$

■ Example 6: Evaluate graphically

$$\lim_{x\to -1} (4x^3 - 2x^2 + 2)$$

■ Example 7: Evaluate graphically

$$\lim_{x \to 3} f(x) \text{ where } f(x) = \begin{cases} 10 - 2x, & x < 3 \\ x^2 - x, & x \ge 3 \end{cases}.$$

Properties of Limits

If k is a constant, $\lim_{x\to c} f(x) = L$, and $\lim_{x\to c} g(x) = M$, then

I. $\lim_{x\to c} k = k$

II.
$$\lim_{x\to c} x = c$$

III. $\lim_{x\to c} [f(x) \pm g(x)] = L \pm M$

IV. $\lim_{x\to c} [(f\cdot g)(x)] = L\cdot M$

V.
$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}$$
 if $M \neq 0$

V. $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$ VI. $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} = \sqrt[n]{L}$ provided that L > 0 when n is even.

Notation: "IFF" means "if and only if."

Definition: The Limit

$$\lim_{x\to c} f(x) = L \text{ iff } \lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$$

That is, the limit from the right must equal the limit from the left in order for the limit to exist.

■ Example 6 revisited algebraically

$$\lim_{x \to -1} (4 x^3 - 2 x^2 + 2)$$

■ Example 7 revisited algebraically

$$\lim_{x \to 3} f(x) \text{ where } f(x) = \begin{cases} 10 - 2x, & x < 3 \\ x^2 - x, & x \ge 3 \end{cases}.$$

■ Example 5 revisited algebraically

$$\lim_{x\to 3} \frac{x^2-9}{x-3}$$

Can we find the limit algebraically?

Evaluating limits at x = c when the function is continious at x = c is easy; simply evaluate the function at c.

■ Example 8

$$\lim_{x\to 4} \frac{x^2-16}{x-4}$$

■ Example 9

$$\lim_{x \to 7} \frac{x^2 - 8x + 7}{x^2 - 6x - 7}$$

■ Example 10

$$\lim_{x\to 2} \frac{x^2+6x+9}{x-2}$$

■ Example 11

$$\lim_{x\to 1} \frac{x^2-1}{x^2-2x+1}$$

■ Summary of Examples 8 - 11

Evaluating limits of rational functions where the denominator approaches zero.

- a.) If the numerator does not approach zero, then the limit D.N.E. (does not exist).
- b.) If the numerator approaches zero, simplify and then try again.

■ Example 12

$$\lim_{x \to -1} f(x) \text{ where } f(x) = \begin{cases} x^2 + \frac{4}{x}, & x \le -1 \\ 3x^3 - x - 1, & x > -1 \end{cases}$$

■ Example 13

Suppose that the cost C of removing p percent of the pollution from an industrial plant is modeled by:

$$C(p) = \frac{730000}{100 - p} - 7300$$

a.) Find and interpret $\lim_{p\to 80} C(p)$

b.) Find and interpret $\lim_{p\to 100^-} C(p)$

c.) Can all the pollution be removed?