136 🖂 CHAPTER 12 INFINITE SEQUENCES AND SERIES ET CHAPTER 11

- **38.** (a) Following the hint, we get that $|a_n| < r^n$ for $n \ge N$, and so since the geometric series $\sum_{n=1}^{\infty} r^n$ converges (0 < r < 1), the series $\sum_{n=N}^{\infty} |a_n|$ converges as well by the Comparison Test, and hence so does $\sum_{n=1}^{\infty} |a_n|$, so $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.
 - (b) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$, then there is an integer N such that $\sqrt[n]{|a_n|} > 1$ for all $n \ge N$, so $|a_n| > 1$ for $n \ge N$. Thus, $\lim_{n\to\infty} a_n \ne 0$, so $\sum_{n=1}^{\infty} a_n$ diverges by the Test for Divergence.
- **39.** (a) Since $\sum a_n$ is absolutely convergent, and since $|a_n^+| \le |a_n|$ and $|a_n^-| \le |a_n|$ (because a_n^+ and a_n^- each equal either a_n or 0), we conclude by the Comparison Test that both $\sum a_n^+$ and $\sum a_n^-$ must be absolutely convergent. (Or use Theorem 12.2.8 [ET 11.2.8].)
 - (b) We will show by contradiction that both $\sum a_n^+$ and $\sum a_n^-$ must diverge. For suppose that $\sum a_n^+$ converged. Then so would $\sum \left(a_n^+ \frac{1}{2}a_n\right)$ by Theorem 12.2.8 [ET 11.2.8]. But $\sum \left(a_n^+ \frac{1}{2}a_n\right) = \sum \left[\frac{1}{2}\left(a_n + |a_n|\right) \frac{1}{2}a_n\right] = \frac{1}{2}\sum |a_n|$, which diverges because $\sum a_n$ is only conditionally convergent. Hence, $\sum a_n^+$ can't converge. Similarly, neither can $\sum a_n^-$.
- 40. Let ∑ b_n be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of Exercise 39(b).] This series will have partial sums s_n that oscillate in value back and forth across r.
 Since lim a_n = 0 (by Theorem 12.2.6 [ET 11.2.6]), and since the size of the oscillations |s_n r| is always less than |a_n| because of the way ∑ b_n was constructed, we have that ∑ b_n = lim s_n = r.

12.7 Strategy for Testing Series

ET 11.7 👡

- 1. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n^2-1}{n^2+1} = \lim_{n\to\infty} \frac{1-1/n^2}{1+1/n} = 1 \neq 0$, so the series $\sum_{n=1}^{\infty} \frac{n^2-1}{n^2+1}$ diverges by the Test for Divergence.
- **2.** If $a_n = \frac{n-1}{n^2+n}$ and $b_n = \frac{1}{n}$, then $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n^2-n}{n^2+n} = \lim_{n\to\infty} \frac{1-1/n}{1+1/n} = 1$, so the series $\sum_{n=1}^{\infty} \frac{n-1}{n^2+n}$ diverges by the Limit Comparison Test with the harmonic series
- 3. $\frac{1}{n^2+n} < \frac{1}{n^2}$ for all $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{1}{n^2+n}$ converges by the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$, a p-series that converges because p=2>1.
- 4. Let $b_n = \frac{n-1}{n^2+n}$. Then $b_1 = 0$, and $b_2 = b_3 = \frac{1}{6}$, but $b_n > b_{n+1}$ for $n \ge 3$ since $\left(\frac{x-1}{x^2+x}\right)' = \frac{(x^2+x)-(x-1)(2x+1)}{(x^2+x)^2} = \frac{-x^2+2x+1}{(x^2+x)^2} = \frac{2-(x-1)^2}{(x^2+x)^2} < 0 \text{ for } x \ge 3. \text{ Thus,}$

SECTION 12.7 STRATEGY FOR TESTING SERIES ET SECTION 11.7 🗀 13

 $\{b_n \mid n \geq 3\}$ is decreasing and $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=3}^{\infty} (-1)^{n-1} \frac{n-1}{n^2+n}$ converges by the Alternating Series Test. Hence, the full series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n-1}{n^2+n}$ also converges.

5.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+2}}{2^{3(n+1)}} \cdot \frac{2^{3n}}{(-3)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{-3 \cdot 2^{3n}}{2^{3n} \cdot 2^3} \right| = \lim_{n \to \infty} \frac{3}{2^3} = \frac{3}{8} < 1$$
, so the series
$$\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{2^{3n}}$$
 is absolutely convergent by the Ratio Test.

6.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{3n}{1 + 8n} = \lim_{n \to \infty} \frac{3}{1/n + 8} = \frac{3}{8} < 1$$
, so $\sum_{n=1}^{\infty} \left(\frac{3n}{1 + 8n} \right)^n$ converges by the Root Test.

7. Let $f(x) = \frac{1}{x\sqrt{\ln x}}$. Then f is positive, continuous, and decreasing on $[2, \infty)$, so we can apply the Integral Test.

Since
$$\int \frac{1}{x\sqrt{\ln x}} dx \begin{bmatrix} u = \ln x, \\ du = dx/x \end{bmatrix} = \int u^{-1/2} du = 2u^{1/2} + C = 2\sqrt{\ln x} + C$$
, we find
$$\int_2^\infty \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \int_2^t \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \left[2\sqrt{\ln x}\right]_2^t = \lim_{t \to \infty} \left(2\sqrt{\ln t} - 2\sqrt{\ln 2}\right) = \infty.$$
 Since the integral diverges, the given series
$$\sum_{t=0}^\infty \frac{1}{t\sqrt{\ln t}}$$
 diverges.

8.
$$\sum_{k=1}^{\infty} \frac{2^k k!}{(k+2)!} = \sum_{k=1}^{\infty} \frac{2^k}{(k+1)(k+2)}$$
. Using the Ratio Test, we get

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=\lim_{k\to\infty}\left|\frac{2^{k+1}}{(k+2)(k+3)}\cdot\frac{(k+1)(k+2)}{2^k}\right|=\lim_{k\to\infty}\left(2\cdot\frac{k+1}{k+3}\right)=2>1, \text{ so the series diverges.}$$

Or: Use the Test for Divergence.

9.
$$\sum_{k=1}^{\infty} k^2 e^{-k} = \sum_{k=1}^{\infty} \frac{k^2}{e^k}.$$
 Using the Ratio Test, we get
$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(k+1)^2}{e^{k+1}} \cdot \frac{e^k}{k^2} \right| = \lim_{k \to \infty} \left[\left(\frac{k+1}{k} \right)^2 \cdot \frac{1}{e} \right] = 1^2 \cdot \frac{1}{e} = \frac{1}{e} < 1, \text{ so the series converges.}$$

10. Let $f(x)=x^2e^{-x^3}$. Then f is continuous and positive on $[1,\infty)$, and $f'(x)=\frac{x(2-3x^3)}{e^{x^3}}<0$ for $x\geq 1$, so f is decreasing on $[1,\infty)$ as well, and we can apply the Integral Test. $\int_1^\infty x^2e^{-x^3}\,dx=\lim_{t\to\infty}\left[-\frac13e^{-x^3}\right]_1^t=\frac1{3e}$, so the integral converges, and hence, the series converges.

138
CHAPTER 12 INFINITE SEQUENCES AND SERIES ET CHAPTER 11

11.
$$b_n = \frac{1}{n \ln n} > 0$$
 for $n \ge 2$, $\{b_n\}$ is decreasing, and $\lim_{n \to \infty} b_n = 0$, so the given series $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$ converges by the Alternating Series Test.

12. Let
$$b_n=\frac{n}{n^2+25}$$
. Then $b_n>0$, $\lim_{n\to\infty}b_n=0$, and
$$b_n-b_{n+1}=\frac{n}{n^2+25}-\frac{n+1}{n^2+2n+26}=\frac{n^2+n-25}{(n^2+25)(n^2+2n+26)}, \text{ which is positive for } n\geq 5, \text{ so the}$$
 sequence $\{b_n\}$ decreases from $n=5$ on. Hence, the given series $\sum_{n=1}^{\infty}(-1)^n\frac{n}{n^2+25}$ converges by the Alternating Series Test

13.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{3^{n+1} (n+1)^2}{(n+1)!} \cdot \frac{n!}{3^n n^2} \right| = \lim_{n \to \infty} \left[\frac{3(n+1)^2}{(n+1)n^2} \right] = 3 \lim_{n \to \infty} \frac{n+1}{n^2} = 0 < 1$$
, so the series $\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$ converges by the Ratio Test.

14. The series $\sum_{n=1}^{\infty} \sin n$ diverges by the Test for Divergence since $\lim_{n\to\infty} \sin n$ does not exist.

15.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)[3(n+1)+2]} \cdot \frac{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}{n!} \right|$$
$$= \lim_{n \to \infty} \frac{n+1}{3n+5} = \frac{1}{3} < 1$$

so the series $\sum_{n=0}^{\infty} \frac{n!}{2 \cdot 5 \cdot 8 \cdot \cdots \cdot (3n+2)}$ converges by the Ratio Test.

16. Using the Limit Comparison Test with
$$a_n = \frac{n^2+1}{n^3+1}$$
 and $b_n = \frac{1}{n}$, we have
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{n^2+1}{n^3+1} \cdot \frac{n}{1} \right) = \lim_{n \to \infty} \frac{n^3+n}{n^3+1} = \lim_{n \to \infty} \frac{1+1/n^2}{1+1/n^3} = 1 > 0. \text{ Since } \sum_{n=1}^{\infty} b_n \text{ is the divergent harmonic series, } \sum_{n=1}^{\infty} a_n \text{ is also divergent.}$$

- 17. $\lim_{n\to\infty} 2^{1/n} = 2^0 = 1$, so $\lim_{n\to\infty} (-1)^n 2^{1/n}$ does not exist and the series $\sum_{n=1}^{\infty} (-1)^n 2^{1/n}$ diverges by the Test for Divergence.
- **18.** $b_n = \frac{1}{\sqrt{n-1}}$ for $n \ge 2$. $\{b_n\}$ is a decreasing sequence of positive numbers and $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n-1}}$ converges by the Alternating Series Test.

19. Let
$$f(x) = \frac{\ln x}{\sqrt{x}}$$
. Then $f'(x) = \frac{2 - \ln x}{2x^{3/3}} < 0$ when $\ln x > 2$ or $x > e^2$, so $\frac{\ln n}{\sqrt{n}}$ is decreasing for $n > e^2$.

By l'Hospital's Rule, $\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{1/(2\sqrt{n})} = \lim_{n \to \infty} \frac{2}{\sqrt{n}} = 0$, so the series $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$ converges by the Alternating Series Test.

SECTION 12.7 STRATEGY FOR TESTING SERIES ET SECTION 11.7 🗆 13

20.
$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{k+6}{5^{k+1}} \cdot \frac{5^k}{k+5} \right| = \frac{1}{5} \lim_{k \to \infty} \frac{k+6}{k+5} = \frac{1}{5} < 1$$
, so the series $\sum_{k=1}^{\infty} \frac{k+5}{5^k}$ converges by the Ratio

21.
$$\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n} = \sum_{n=1}^{\infty} \left(\frac{4}{n}\right)^n$$
.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{4}{n} = 0 < 1$$
, so the given series is absolutely convergent by the Root Test.

22.
$$\frac{\sqrt{n^2-1}}{n^3+2n^2+5} < \frac{n}{n^3+2n^2+5} < \frac{n}{n^3} = \frac{1}{n^2}$$
 for $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{\sqrt{n^2-1}}{n^3+2n^2+5}$ converges by the Comparison Test with the convergent *p*-series $\sum_{n=1}^{\infty} 1/n^2$ $(p=2>1)$.

23. Using the Limit Comparison Test with
$$a_n = \tan\left(\frac{1}{n}\right)$$
 and $b_n = \frac{1}{n}$, we have
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\tan(1/n)}{1/n} = \lim_{x \to \infty} \frac{\tan(1/x)}{1/x} \stackrel{\text{II}}{=} \lim_{x \to \infty} \frac{\sec^2(1/x) \cdot (-1/x^2)}{-1/x^2} = \lim_{x \to \infty} \sec^2(1/x) = 1^2 = 1 > 0.$$
 Since $\sum_{n=1}^{\infty} b_n$ is the divergent harmonic series, $\sum_{n=1}^{\infty} a_n$ is also divergent.

24.
$$\frac{|\cos(n/2)|}{n^2+4n} < \frac{1}{n^2+4n} < \frac{1}{n^2}$$
 and since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges $(p=2>1)$, $\sum_{n=1}^{\infty} \frac{\cos(n/2)}{n^2+4n}$ converges absolutely by the Comparison Test.

25. Use the Ratio Test.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{e^{(n+1)^2}} \cdot \frac{e^{n^2}}{n!} \right| = \lim_{n \to \infty} \frac{(n+1)n! \cdot e^{n^2}}{e^{n^2+2n+1}n!} = \lim_{n \to \infty} \frac{n+1}{e^{2n+1}} = 0 < 1$$
, so $\sum_{n=1}^{\infty} \frac{n!}{e^{n^2}}$ converges.

$$26. \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{n^2 + 2n + 2}{5^{n+1}} \cdot \frac{5^n}{n^2 + 1} \right) = \lim_{n \to \infty} \left(\frac{1 + 2/n + 2/n^2}{1 + 1/n^2} \cdot \frac{1}{5} \right) = \frac{1}{5} < 1, \text{ so }$$

$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$$
 converges by the Ratio Test.

27.
$$\int_{2}^{\infty} \frac{\ln x}{x^{2}} dx = \lim_{t \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{t} \text{ (using integration by parts)} \stackrel{\text{H}}{=} 1. \text{ So } \sum_{n=1}^{\infty} \frac{\ln n}{n^{2}} \text{ converges by the Integral Test,}$$
 and since $\frac{k \ln k}{(k+1)^{3}} < \frac{k \ln k}{k^{2}} = \frac{\ln k}{k^{2}}$, the given series $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^{3}}$ converges by the Comparison Test.

28. Since
$$\left\{\frac{1}{n}\right\}$$
 is a decreasing sequence, $e^{1/n} \le e^{1/1} = e$ for all $n \ge 1$, and $\sum_{n=1}^{\infty} \frac{e}{n^2}$ converges $(p=2>1)$, so $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$ converges by the Comparison Test. (Or use the Integral Test.)

29.
$$0 < \frac{\tan^{-1} n}{n^{3/2}} < \frac{\pi/2}{n^{3/2}}$$
. $\sum_{n=1}^{\infty} \frac{\pi/2}{n^{3/2}} = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ which is a convergent *p*-series $(p = \frac{3}{2} > 1)$, so $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{3/2}}$ converges by the Comparison Test.

140 🗆 CHAPTER 12 INFINITE SEQUENCES AND SERIES ET CHAPTER 11

30. Let
$$f(x) = \frac{\sqrt{x}}{x+5}$$
. Then $f(x)$ is continuous and positive on $[1, \infty)$, and since $f'(x) = \frac{5-x}{2\sqrt{x}(x+5)^2} < 0$ for $x > 5$, $f(x)$ is eventually decreasing, so we can use the Alternating Series Test.

$$\lim_{n\to\infty}\frac{\sqrt{n}}{n+5}=\lim_{n\to\infty}\frac{1}{n^{1/2}+5n^{-1/2}}=0\text{, so the series }\sum_{j=1}^{\infty}(-1)^{j}\frac{\sqrt{j}}{j+5}\text{ converges.}$$

31.
$$\lim_{k\to\infty} a_k = \lim_{k\to\infty} \frac{5^k}{3^k+4^k} = [\text{divide by } 4^k] \lim_{k\to\infty} \frac{(5/4)^k}{(3/4)^k+1} = \infty \text{ since } \lim_{k\to\infty} \left(\frac{3}{4}\right)^k = 0 \text{ and } \lim_{k\to\infty} \left(\frac{5}{4}\right)^k = \infty.$$
Thus, $\sum_{k=1}^{\infty} \frac{5^k}{3^k+4^k}$ diverges by the Test for Divergence.

32.
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \frac{2n}{n^2} = \lim_{n\to\infty} \frac{2}{n} = 0$$
, so the series $\sum_{n=1}^{\infty} \frac{(2n)^n}{n^{2n}}$ converges by the Root Test.

33. Let
$$a_n = \frac{\sin(1/n)}{\sqrt{n}}$$
 and $b_n = \frac{1}{n\sqrt{n}}$. Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = 1 > 0$, so $\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$ converges by limit comparison with the convergent p -series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ $(p=3/2>1)$.

34.
$$0 \le n \cos^2 n \le n$$
, so $\frac{1}{n + n \cos^2 n} \ge \frac{1}{n + n} = \frac{1}{2n}$. Thus, $\sum_{n=1}^{\infty} \frac{1}{n + n \cos^2 n}$ diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{2n}$, which is a constant multiple of the (divergent) harmonic series.

35.
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^{n^2/n} = \lim_{n\to\infty} \frac{1}{\left[\left(n+1\right)/n\right]^n} = \frac{1}{\lim_{n\to\infty} \left(1+1/n\right)^n} = \frac{1}{e} < 1$$
, so the series
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} \text{ converges by the Root Test.}$$

36. Note that
$$(\ln n)^{\ln n} = \left(e^{\ln \ln n}\right)^{\ln n} = \left(e^{\ln n}\right)^{\ln \ln n} = n^{\ln \ln n}$$
 and $\ln \ln n \to \infty$ as $n \to \infty$, so $\ln \ln n > 2$ for sufficiently large n . For these n we have $(\ln n)^{\ln n} > n^2$, so $\frac{1}{(\ln n)^{\ln n}} < \frac{1}{n^2}$. Since $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges $(p=2>1)$, so does $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$ by the Comparison Test.

37.
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(2^{1/n} - 1\right) = 1 - 1 = 0 < 1$$
, so the series $\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1\right)^n$ converges by the Root Test.

SECTION 12.8 POWER SERIES ET SECTION 11.8 🗀 141

38. Use the Limit Comparison Test with $a_n = \sqrt[n]{2} - 1$ and $b_n = 1/n$. Then $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2^{1/n} - 1}{1/n}$

$$= \lim_{x \to \infty} \frac{2^{1/x} - 1}{1/x} \stackrel{\mathrm{H}}{=} \lim_{x \to \infty} \frac{2^{1/x} \cdot \ln 2 \cdot (-1/x^2)}{-1/x^2} = \lim_{x \to \infty} (2^{1/x} \cdot \ln 2) = 1 \cdot \ln 2 = \ln 2 > 0. \text{ So since } \sum_{n=1}^{\infty} b_n$$

diverges (harmonic series), so does $\sum_{n=1}^{\infty} (\sqrt[n]{2} - 1)$.

Alternate Solution:

$$\sqrt[n]{2} - 1 = \frac{1}{2^{(n-1)/n} + 2^{(n-2)/n} + 2^{(n-3)/n} + \dots + 2^{1/n} + 1} \text{ [rationalize the numerator] } \ge \frac{1}{2n},$$

and since $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (harmonic series), so does $\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1 \right)$ by the Comparison Test.

12.8 Power Series

ET 11.8

1. A power series is a series of the form $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$, where x is a variable and the c_n 's are constants called the coefficients of the series.

More generally, a series of the form $\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$ is called a power series in (x-a) or a power series centered at a or a power series about a, where a is a constant.

- **2.** (a) Given the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$, the radius of convergence is:
 - (i) 0 if the series converges only when x=a
 - (ii) ∞ if the series converges for all x, or
 - (iii) a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R. In most cases, R can be found by using the Ratio Test.
 - (b) The interval of convergence of a power series is the interval that consists of all values of x for which the series converges. Corresponding to the cases in part (a), the interval of convergence is: (i) the single point $\{a\}$, (ii) all real numbers; that is, the real number line $(-\infty, \infty)$, or (iii) an interval with endpoints a-R and a+R which can contain neither, either, or both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of convergence.

$$\textbf{3. If } a_n = \frac{x^n}{\sqrt{n}}, \text{ then } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{\sqrt{n+1}/\sqrt{n}} \right| = \lim_{n \to \infty} \frac{|x|}{\sqrt{1+1/n}} = |x|.$$

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ converges when |x| < 1, so the radius of convergence R = 1. Now we'll

check the endpoints, that is, $x=\pm 1$. When x=1, the series $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ diverges because it is a p-series with

 $p=\frac{1}{2}\leq 1$. When x=-1, the series $\sum_{n=1}^{\infty}\frac{(-1)^n}{\sqrt{n}}$ converges by the Alternating Series Test. Thus, the interval of convergence is I=[-1,1).