FEB-23-2007 FRI 08:52 Al HCC BLDG., 1% FAX NO. 206 870 4803 P. 01/10

12 1 INFINITE SEQUENCES AND SERIES 1 ET 11
12.1 Sequences ET 11.1

e 1. (a) A sequence is an opdered list of nombers. It can also be defined as a function whose domain is the set of positive
integers.
(b) The terms an, upproach 8 us . becomes large. In fuct, we can make a. as ¢lose 1o B as we like by taking n
sufficiently larpe.
(c) The terms an become large as 71 becomes large. In fact, we can make an a8 large as we like by taking n
sulficiently large,

2. (a) From Definition !, a convergent sequence is a sequence for which lim an exists. Exumples: {1/n}, {1/2"}
(b) A divergent sequence is a sequence for which lim e, does not exist. Examples: {n}, {gsinn}
Th—tea

3 o, =1— (0.2)", =0 the sequence is {0.8,0.96, 0.892, 0.6984, 0.99968, ...}

4 a nek 1 , 50 the saquence js Eééi 6 = 1—iliﬁ
"= B 1 RS AR AR VAR Sl R A TR TR
1
8

-1
5. an—g( 1) .st::.thestf:qum'n::eis{_—3 é _—3 i —3 }={ 3,3,—%

_1
e

'R *24'120°
6. a,=2-4-6.....(2n), so the sequence is
{2,2-4,2-4-6,2-4-6-8,2-4-6-8-10,...} = {2,8,48, 384, 3840, ... }.
Y a1 =3, ang1 = 200 — 1. Bach term is defined in ferms of the preceding term,
=20 =1=2(N=1=50 a3 =20~ 1=2(6)—1=084=2a3~ 1 =2(0) -1 =1T.
ar = 2a4 — 1 = 2(17) — 1 = 33. The sequence is {3,5,9,17,33,... }.

@
8 a1 =4, ant1 =
oy —

e 4 4o _ 48 478
a—1 4-1 3 m-1 T-171/

sequence will alternately equal 4 and 4/3, 50 the sequence is {4, 3,4, ;,‘L }

g = = 4, Since na = ai, we can see that the terms of the

. 1
9. The numerators are all 1 and the denominators are powers of 2, so an, = T

10. The numerators are all 1 and the denominators are multiples of 2, 8o a,, = 2L
.
1. {2,7,12;17,...}. Bach term is larger than the preceding one by 5, g0
an=0a1+dn—1)=2+5n—-1) =5n—3

12, {—%, %, - 1:'3 N 21 } The numerator of the wth term is r and its denominator is (r - l)2 Including the
. 3
alternating signs, we gel gy, = (—1)" m———
(n+1)

131 {1, —%, %, 27 } Each term is —w— times the preceding one, 80 gn, = (—n)“_]‘.

14. {5,1,5,1,5,1,... } The average of 5 ﬂncl 1is 3, so we can think of the sequence as alternately adding 2 and —2 to
3. Thns, a, = 3 - (---1)“"'1 -2
18 @, = a(n — 1). an — oo s 7 — 0o, 80 the sequence diverges.

a7
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n4- 14+1/n 140 1
16. an = we— = L 80ty — —— == = a3 7 — oo, Converges
n=3n—1 3-1/n ™ 3-0 3 ’ g
3+5n%  (A+607)/n"  B4-3/n? 540
12 a, = = - = 80 @y — — =5 us n — ca. Converges
T nE . (ngnnynt A+lm T 1x0 ' E
n 1 1
18. a. = v = L 50 (i = —— = 1l as n — co. Converges
I E e vmrl T T o - Ees
" 1/23\" 1 avm _ 1 o
19 o, = [TEsY = 3 (_i) , 80 nlll'lgna,ﬂ =3 Jme(g) =z-0=0 by {(8) with r = £. Converges
20, Gy = —— = v/ The numerator approaches oo and the denominator approaches 041 =1 as
R Y W '
N — o0, $0 4n — 00 48 7. — 0o and the sequence diverges.
(-1)*'n (-1 1 1
21 o, = = y500 2 an| = S = — Dasn — o0, s0 an — 0 by the Squecze
“ n? -k ] e 1/n = Lo n+1l/n ™" n ﬁ " Y 4
Theorem and Theorem 6. Converges
22. an = ﬂ?—ﬁa— Now |a,| = n® = 1 — 1 as m — oa, but the terms of the sequence
T Tl 2 - T pdpond41l 1424k T ’ l
{a,} nlternate in sign, so the sequence a1, as, ag, . . . converges 1o =1 and the sequence ¢a, a4, aa, . . . CONVETEES
to +1. This shows that the given sequence diverges since its tarms don't approach a single real number,
1. a,, = coz(n/2). This scquence diverges since the terms don’t approach any paricular real number as r — oa, The
terms take on values between —1 and |,
24, gn = cou(2/n). As s o0, 2/n — 0, 50 cos(2/n) — cos 0 = 1. Converges
(2n — 1) (2 — 1) 1
25, an = = = — Dasn — oo, Converges
Grn+ 1) @nrlEmEs— 0 (2r1)(2n) B
26. 2n — couws o — oo, A0 fince lim arctane = §, we have lim arctan2n = I. Converges
i —t frwer o0
M e g laee™™ 140
27.an=ﬁﬁ;|—ﬁ_-f—m e — — t — 0 us 0 — oo, Converges
e —1 g™ ete=gm e —0
A, oy = an __Wn _ 1 Ll n— co. Gonverges
" mon T ln24-lun ﬁ o1 o+1 7 ’ B
2 n® .2t n o, Sz w 2 - .
M, o, =n " = —, Since lim — = lim =~ = lim — =0, it follows from Theorem 3 that lim a, = 0.
ey n—on @i T—eo0 g m—oa &f Far o
Converpes
. an = noosnw = n{—1)", Finee |o,] = — o0 a8 n = oo, the given sequence diverges,
cou” 7 . 2 . . 1 cos® n
0% < — < cos®n £ 1], — =0, OnVe
No< an = on [since 0 < eos®n < 1], s0 since nl&r;ﬂ o™ 1] { o } converges to 0 by the Squeeze
Theorem.

32,

1.

n-+1

d

an=In(n+1}—Inn = In( ) = 111(1 - %) — In (1) = Dasn — oo, Converges

an = naEn{l/n) = %?@ Since lim E%E-)- = lim E:—f [where ¢ = 1/z] = 1, it follows from

&—mo t—it

Theorem 3 that {a., } converges to 1.

P. 02/10
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1.
1 - F) b (0 = 1) e mepn @ = o,
50 dn, — —00 48 72 — 00, Diverges

g\ 1 2 1 2
(ZI.-I— —) = ].nam=—ln(l—l——).Asn—rm.——>Dandln(1+—) —0,80lna, — 0.
n n n n n

Thus, o, — ¢ = 1 a8 n — oo, Converges

_ gin 2

1+\/'T‘”|—1m/‘

the Squeeze Theorem. Converges

lim

Ti—00 1+\/_

= lim an=0by
T—roa

"0_.__-...].-'.....{” -\::]_'
l+4/m = " T 14 /n

I diverges since the sequence takes on only two values, 0 and |, and never stays
arbitrarily close to either one (or any other value) for » sufficiently large,

ag. %, El,é, %, 1, E= 37 T“ } GOn_1 = % and azq, = L 5 for all positive integers . IH]rcnm an = 0 singe

lim azn—1 = lim 1_ Oand lim s, = lim = 0. For »n sufficiently large, oy, can be made as close to

n—oo n—ad 1 n—oo Tinsbod 7y =[e 2

0 as we like, Converges

n! 1 2 3 n—1) n_ 1 T
39 Gn =g, =% 5 g3 """ ( 5 ) " 25 = l’rm n=l]= 1 — 8 AR T —r 0, 8O {an | diverges,
3" 33 3 ; ]

40. 0 < |a, —-m =T—73-r(;—i—l—}% < %g— [forn = 2] = 2—;—»Dtlbn—roo s0 by the Squeczc

41.

43

)
Theorem and Theorem 6, {{(—3)" /n} converges tw G

ﬁ a2,
“ 2.3

( h - ™
) 20 .

“ - .

Y- o 4 ag

From the graph, we see that the sequence

{(—1)"‘ 'n;;- 1

between 1 and —1 (approximately).

From the graph, it appears that the sequence converges to 2.

)"}

} is divergent, since it oscillates {(——) } converges to 0 by (6), and hence {2+ (-4

converges (0 2 4- 0 = 3,

Uﬂf_ . From the graph, it appears that the sequence
o " converges to about (.78,
. — = lim 2 =1, 50
e 2n ) n—m 24 1/n Y
. ) 2n T
“111:1;1': arcta‘n(zn - 1) = arctan 1 = T
\ o

o . . sl

P. 03/10
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M. 1 From the graph, it appears that the sequence
f

converges (slowly) 1o 0.

(JEM gi—»ﬂusn—'m,sobythe

sin n
Squeere Theorem and Theorem 6, {— }

VT

b J converges to 0.

45,

~, Ln

From the graph, it appeaars that the sequence converges to 0,

a
at n
0 ay=—™=—

Tl Ton

T T 1 111
=1 -2 m-3y 321

n2

. . SN -2m=3)
L W /1o 1/n

= —+0asn— oo

(1 =1/}l =2/n)(1 —3/n)

50 by the Sgueeze Theorem, {ns / nl} converges 1o 0,

[for n 2= 4]

46. " From the graph, it appeurs that the sequence converges 1o .
‘ 5= V5 < YT B < ¥R e = VEVR
e =¥2.8—8asn— oo [ﬂrgoz”"::z“:l]

Hense, an, — 3 by the Squeeze Theoram.

\ Jay  Alternate Solution: Lety = (3% + 5“’)1/‘“. Then

ln(:'l""-l—E"’)ﬂ . 3"In3+5%1nb
T - mlul,.l,taln I 4+ B

N ln34Inng

— iy (&) In3+ s
S NN

'Zl..IZI. :.I].'H = ]."II’II
.BII—*UA'.\ l T
= ].n O

so lin ¢ = ¢ % =g, and so { a4 .'3"'*} converges to 5.
IO 0o

47, 1 From the graph, it appears that the sequence approaches 0,

1-3-5-”--(2?1—1):]_. 3 b 2n—1

{2n)" 2n 2n 2n 2n

0 < an=

<o (1)) () = e —0as R

3.5 (2n—1)
(2n)"

\ W T . .J w S0 hy the Squeeze Theorem, { L } converges

to 0.
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190 5000
8. ' A o R
(]\.. N [} . . <10 D\ PR ~ 15
1.3 8- {2?‘1—1)

From the graphs, it seems that the sequence diverges, an = . We first prove by induction

7 n—1 . ] ]
that o, = (3) forall n. This is clearly true for n 2= 1, g0 let 2(n) be the statement that the above is frue for

&

. m+1 . (3\""" 21 :
n. We must show it is then true for i+ 1. anpq = an -+ ot 3 (2 222 (induction hypothesis).
n+1 2 o
Bt 2 l"'ll > g [ince 2(In +1) = 3(n+1) = 4n+223n+3 « n X 1] endsowe gel that
-

3 -1 ] . . - . . n—1
a1 2 (21" 2 o= (8)™ which is P(n 4+ 1). Thus, we huve proved our first assertion, so since {(%)" }

diverges (by (8)), s0 does the piven sequence {a,].
48, (a) o, = 1000(1.06)" = @1 = 1060, cp = 112360, an = 1191.02, gz = 1262.48, and a5 = 1338.23.
(by lim an = 1000 lim (1.06)™, so the sequence diverges by (8) with 7 = 1.06 = 1.

1 [T -
5 it @, Is an even number
.l = { 2 " When ap = 11, the first 40 tarms ave 11, 34, 17, 52, 26, 13, 40,

ey, -1 if ay is an odd number
20,10,5, 16,8,4,2,1,4,2, 1,42 1.4 2,1.421,4,2,1,4,2,1,4,2,1,4,2, 1, 4. When a1 = 25, the first
40 terms are 25, 76, 38, 19, 58, 20, 88, 44, 22, 11, 34, 17, 52, 26, 13,40, 20, 10, 5, 16, 8,4,2,1,4,2,1,4,2,1, 4,
2. 0,4,2,1, 4,2, 1, 4. The famous Collatz conjecture is that this sequence alwitys réachey 1, regardless af the
sturting point ay.
51. If |v| = 1, then {r"} diverges by (B), so {nr™} diverges slso, sinee |nr™| = ajr®| = |+"|. U |¢| < 1 then

el

. " . T OH ., .
lim zr* = lim — = lim +—r———F2 = lim

m— o m—ma 7T D—rac (—]]Tl T‘) i w—on — TV

= 0,80 lim nr™ = 0, and hence {nr™} converges
Py

whenever |r| < 1.
82, () Let TJ‘-‘&: &n = 4. By Definition 1, this means that for every £ = 0 there is an integer N such that \a,«. — L\ < &
whenever o = N. Thus, @,y — L] <. e whenevern4-1 > N & n > N —1 Tt{ollows that
nli_l"rgn fn-+-1 = L und so nli_rngc n = n]ﬂ'lgo Grtle
ML= T‘IEEG an then .,,h_l.l}.q @nqy = Loalso, so L mustsatisfy L=1/(1+ L) = L*4+L—1=0 =

L= ﬁ_il'—ﬁ (since L has to be non-negative il it exisg).
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B3. Since {an } is o decteasing sequence, an > anq-1 For all vz 1, Because all of ks terms lie between & and 8, {an} is
i bounded sequence. By the Monotonic Sequence Thearem, {ay, } is convergent; that is, {ap} hag u limit L. L must

be less than & sinee {an} is decreasing, s0 b < L < 8,

54, Gm = 1 /5™ defines a decreasing geometric Sequence since an pi = lan < an foreachn > 1. The sequence is

bounded since 0 < @ = % foralln = 1.

1 1 1 1 .
. Q== ——— & decreasing since dap+1 = = < o, foreachn > 1, The
55, an 3n ¥ 3 k3 g -+ 2(’!1 + |) + 3 ™ o 5 an + q n =
sequence is bounded sinee 0 < oq = % for all n 2= 1. Note that a1 = %
2n -3 | . . . . o B~ 3
56. an = = defines an increasing sequence since for f(w) = ,
a gn 44 e £5cn S () 3 -4
A - 4){(2) — (22 — ¢ 1 . .
Fim) = (B + 4)(2) (2"?._: 3)(3) = 17 7 = {1 The sequence is bounded since gy, = ag = —% for
(3z 4 4)° (B o 4)"
dn—-3 32n 3
= 1, and an < n_ <22 = Ztarn = 1.
3n n 4
57, 1, = coa{nsr/2) is not monotonic, The fir few terms are 0, —1,0, 1,0, =1, 0, 1, . ... Tn fact, the sequence

consists of the teems 0, —1, 0, 1 repeated over and aver again in that order. The scquence is bounded since |a.| < 1

for alln = 1.
BB o, = ne™" defines u positive decreasing sequence since the function f(w) = ae™ " is decreasing for & = 1.
[Fe)=e" —we™ =% (1 — ) < 0fore > 1.] The sequence is bounded above by ay = 1E and below by 0.

n R . . i
89, 0, = — delines a decreasing sequence since for f{z) = — ) . .
" RE & =5 He) = 5y —

(w* + 1)(1) ~2(2m)  1-—a?

Flm) = (2% +1)° @+

< 0 forz = |, The sequence is bounded since 0 < an % 15 for all

n = 1.

1 . . . . 1. . N
60. o, = n + " defines an ingreasing seguence since the function g(x) = = + < 18 inereasing forw = 1.
[¢7(x) = 1 = 1/z” = 0 for 2 > 1.] The sequence s unbounded since 4, — oo as n — oo. (It is, however,

bounded below by o = 2.)

B1. 0o = 242, go = 294 gp = T sogn, = 2070 S 0l-02Y ) im g = lim 220 =0t =4

n—rod n— oo

Alternate sotution: Let L = Hm ae. (We could show the limit exists by showing that {2 } is bounded and
FL—roa

increasing) Then L must satisfy L = +/2- L = L? =3[ = L{L=3)=0. L3 0 since the sequence

increases, so L = 3,
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62, (a) Let P, be the statement that @r--1 = an #nd an % 8. P4 15 obviously rme. We will assume that P, is true and

then show that as a consequence Po must also be (U2, a4 = 2ngt & 2+ Got1 2 V24 an &

Dyl = 2+ Ay = Qpers 2 Gn, which is the induction hypothesis, an1 £ 3 = V242, 23 &
e 24+0n =9 4 a7, which is certainly true because we are agsuming that a, =< 3. 50 P is true for all n,

and so 21 < an < 3 (showing that the sequence iz bounded), and hence by the Monatonic Sequence Theorem,

lim ., exists.
TL—+ 03

(M IFL = nlil'.\;ln Gro then B Gy = Lalso,soL=+v2+L = [*=2+L & L*-L-2=0 &
(L+1L~2)=0 <& L=2(since L can't be negative).

63. We show by induction that {an} 18 inereasing and bounded above by 3.
Let P, be the proposition thal 41 > iy and 0 < 6y, < 8. Clearly Py iy true. Assume that P, is true.

1 1 1 1
Then ant1 = n = o= = — -
(J‘»u{-l (2% ﬂ-‘l’t'|-1 Qn
. 1 1 . i .
NOW Gz = 3 — »3—— =ant1 *+ Pnr1. This proves that {a,} is increasing and hounded above
a1 an

by 3,50 1 = a1 < ay < 3, that is, {ap } is bounded, and henee convergent by the Monotonic Sequence Theorem,

I L == lim @n. then lim an4y = Lalso, so L must satisfy L =3 — 1/L = *—3L+1=0 =
L= -Li_f@ Butl =10l = %@.

64. We use induction, Let /2, be the statement that 0 < @y < an < 2. Clearly Py is rue, since ap = 1/(3—2) = 1,
~ Now assume that P, is tue. Then @t £ an = —Ongl = —@n = d—ap 23 —an =

- ! << 1

3—-an T 3—dn

Qo = = gnt1. Also anqz = O (since 3 — ap.y is positive) and ant1 = 2 by the indnetion

hypothegis, so Fjy..q is true.

To find the limit, we use the Tact that linclm iy = ﬂlm;a anpr = L=gziy = L[*—3L+1=0 =
T—F —

L= “—¢2—‘[§ But £+ < 2, 50 we must have L = SQQ@.

65 () Let 4, be the number of rabbit pairs in the nth month, Clearly a1 = | == gz. Tn the nth month, each pair that is
2 or more months old (that is, an—z puits) will produce a new pair to add to the @,y pairs already present.
Thus, ar = @n—1 + an—2, 80 that {a.} = {f~}. the Fibonacci sequence.

T Fa fn—1+ fn-2 ) fn-z 1 1
(b) an = —— = @pn-i = = =1 = =1 =1+ If
‘ ) f“ t .fﬂ—l fn—l I .."'ﬂ—]. g fﬂ—l /fﬂ——ﬂ Gn—0
L= lim Gn,then L = lim @n_1and L, = lm e,_g, 50 L must satisfy L =1+ % =

I*—L—1=0 = L= 158 (ynce L mustbe positive).

Gi6. (a) It § is continuous, then f{L) = f(nlim an) = nlim flon) = lim any1 = L by Exercise 52(a).
ok D5 vk O n—oo

(b) By repeatedly pressing the cosine key on the caleulator (that is, tking cogine of the previous andwer) until the
displayed value stabjlizes, we see that L /= 0.73909.
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67. (2) 52 N From the graph, it appears that the
.
_— sequencc{ %!-} converges to 0, that is,
H
. lim L,
Th—tts fL
o R 7 o
1 0.03
(b) - - ™
- y=0l ' »=0.001
75 : 4 125 95 = T = 155
0 4]

From the first geaph, it seems that the smallest possible value of N comesponding o £ = 0.1 is 9, since
n"/nl = 0.1 whenever nn = 10, but 0%/0! = 0.1. From the second graph, it seems that for £ = 0,001, the

smallest possible vatue for IV is 11.

B8. Let & > 0 and let V be any positive integer larger than In(2)/In|r|. Ifn > N then r == ln(e)/In|r| =
alfr| < Ine [since|r| <1 = Ialp|<0] = (") <lne = "< = [f"—0|<sandso
by Definition 1, linl}“ =0,

69. If Bm |an| = Othen lim — |a,| = 0, and since — |an| < tn = |@a], we have that im an = 0 by the Squeeze
n—+od TE—t 0 L= 00

Theorem.
bﬂ+l _ aﬂ--l-] - .
70. (ﬂ) T — b’n - bn‘_lﬂ. _{_ b'n.—..az '1' bﬂ-—Ha‘H 4o han—l + a™

< b BT B M e TR BT B e (- 1T

(b) Since b — @ = 0, we have b1 — ™™l < (410" (b—a) = b — (n+1p(b—a) <a™ =
b*[(n+ 1a — nl] < o™t

T n-l
() With this substitution, (n + 1)a —nb =1, and so 4" = (1 + %) <@t = (:I‘ + - -jl- 3 ) .

. o 1\"/1 13" 1\
() With this subatitetion, we get (1 4 E) (E) <1l = (il. | E) <3 = (1 + ﬁ) < i,
() an < aan SinCe {an ] is increasing, so an < don < 4.
(f) Since {an} is increasing and bounded above by 4, g1 = o, = 4, and 50 {an} i bounded and monotonic, and
hence has a limit by Theorem 11,

P. 08/10
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(@) Firsweshow hit e > a1 = = b,

2
a.l—b‘|,=t{—b—\/a_=%(a—2\/ﬁ—|—b)=%(\/-—\/E) >0 (sincea>0) = a1 b Also

a.—a.]ma—%(a.—l—b)=%(a—b)}ﬂﬂndb—bl=b—\/a_=\/5(\/5—\/3:) =0, 50 >a > b = h

Tn the rame way we can show that gy = gz > bo = In and so the given assertion is true for n = 1. Soppose it is

true for o=k, that is, e > @k41 > g1 = bp. Then

Grta — bypen = L(@prt - bit) — o/ Grpiberr = 3 (Wa-;—l — 2/ ant1bre1 - th-|-1)

= 3V — VEim) >0

Qe ] — G == Sy — %(EA»-H F b)) = %.(%-1—1 — by} = 0

and fgqr = bz = e = Jtrpiber = et (\/bﬁn+l - ﬁm) <0 =
Qppy = Gppa > b = braer, 0 the nssertion is true for n = & 4+ 1. Thos, it is true for all » by mathematical
induction.

(b) From part {a) we have a > a,, > @1 = by > b, > b, which shows that both sequences, {a, } and {b,.}.

are monotonic and bounded, So they gre balh convergent by the Monotonie Sequenge Theorem,

: ; - . - .t by oy -
(c) Let lim an = cand lim by = A. Then lim gppg = lim —2—2 = a= R
Fomer 0 —r oo Fp—r O

=
Fr—rm 2 2

o=+ = o=f

72, (a) Lete = 0. Since lim as, = L, there exists Ny such that |a;».n — L| < aforn > Ny. Since lim asn.g =L,
st Fio—+ o

there exists Na such that |auyp — L] < £ forn = Ny, Let V = max {2V, 2Nz + L} and let» = N. lf nis
even, then n. = 2m where v = N1, 60 |on — L] = |oem — L] < & IFnis odd, then n = 2m + 1, where

m = No, 50 |6n — L = |@zm--1 — L] < &, Therefore lim o, = L.
oy 2

a =1,a:=1 -;=%=]..5,r13=].*|-L=%:lﬂ;,n‘q:].-l-ﬁ]’fgﬁ-|

1 .". 1 5/a = |.‘1|G.

al

a5 =1 -+ sgryy = 3 ~ 1418793, a8 = 1 -+ 75/ = 73 & 1414280, ar = 1 + [gi7mg = Tag =~ 1.414201,
ma = 4 malm = % &4 1.414216. MNotice that oy, < au < ap < ar and ag > o4 > ag > ag. ltappears

that the odd terms are increasing and the even (erms are decreasing, Let's prove thal een—2 > gan 4nd

Oan—1i < Gapq1 by mathematical induction. Suppose that cox—2 = agr. Then 1 - ggp—z > L+ ag =

1 1 1 1
- = L <14 = -1 € Quppey &
1+ aapa L+ au T e Gok—1 < Qipgd T
‘ 1 1 ]
L4+ asp—1 <14+ Gangm = - e == 1 1 ] L

- - 1 4
L An ergp—1 1+ Qe o], 1 b tlog—1 1 @ak1
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Gzr > Gznt2. We have thus shown, by indoction, that the odd terms are increasing and the eveén terms are
decreasing,  Also all terms lie batween 1 and 2, so both {4, } and {b,} are bounded monotonic sequences and

are therefore convergent by Theorem 11, Let lim asy = L. Then lim asnie = L also. 'We have
T — 0 n—roo

1 1 4+ 3an 4 -+ Jign .
iz = 1 4= =1 ‘ = . nta 2= m———  Talin
S TR (e BT %)/ Fan) | 3+ 2ay 0T 50, S

limits of both sides, we get L = :—ig% = B3L+2L°=4+3L = =2 = [ =+7 (since
L =0). Thus, im ag, = 2. Similarly we find that lim ag,; = /2. 8o, by part (a), lim @n = V2.
n—oa Th— 3 Lo
bp b lim pn
3 b G Tn - n — I .n_“:$
13. (a) Suppose {pn} converges to p, Then pni1 e = B opey = .

b
P:a-fp = ptap=bp = plpra-b)=0 = p=Ooup=b-a
bSD
o bpn gt b \ i
(b)pﬂ-l-]‘mm_l+p—ﬂ {ap-nsmcel-k?}l.
o

2 K]
(¢ By part (b), ;1 < (E)Pu.pz « (E)Pl < (E) PhPa = (E)m < (g) P, &te, Tn general,

Py ((—) P, 80 lim p, € lim (g) ~pp = 0since b < a. [By result 8, lim v™ =0if —1 < r < 1,
i Te— s Tl

[g p—Y
y b ‘
Here p = - = (0,1).]

(d) Let & < b. We first show, by induction, that if pg < b — &, then p,, < b —aand pyy > Pa.

bpa po(l—a—po)

Forn = 0, we have p; — pg = 0
' LI gy @ -+ o

= Osince pg < b — a. 8o py > pp.

Now we suppose the assertion is true forn = k&, that is, pn < b — a and pr+41 > pr. Then

oy _ a{b — a) + by — api — bpy = a(b—a — ) = Obecause pp, < b—a
a+ px &+ py a ki

b—a—pry1=b—n—

bpe+1 Pre1(b—a — pri1)
Somyr <b—a Andpg o —ppil = —— 0 =iy =
. Pz 7 Bt € =t Plhet1 P2 4+ Prtl

= 0 8ince pryy < b —a.
Therefore, pyya = pr+1. Thus, the assertion is true for 7w =k 4 1, Ttis therelfore true Tor all » by mathematics]
indnetion, A similar proof by induction shows that iTpo > b — @, then pr > b — a and {p,. } 15 decreasing,

In either case the sequence {py } 14 bounded and manotonie, 50 it is convergent by the Monotonic Sequence

Theorem. It then follows from part {a) that lim p, = & — @,
Fr—rp

P.
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