Test 1 Dusty Wilson Math 115 Name: P-E4

Mathematicians have never been in full agreement on their science, though it is said to be the science of self-evident verities -- absolute, indisputable and definitive. They have always been in controversy over developing aspects of mathematics, and they have always considered their own age to be in a period of crisis.

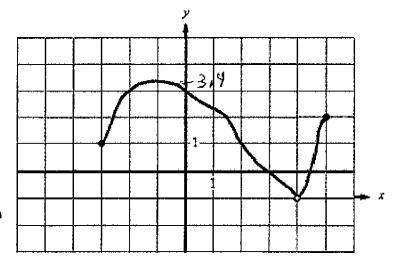
No work = no credit

Henri Léon Lebesgue (1875 - 1941) French mathematician

Warm-ups (1 pt each)

$$\frac{2}{0} = \underline{vP}$$

$$(-3)^2 = 9$$


- 1.) (1 pt) According to the quote (see above), mathematicians have always considered their own age to be in a period of criscs (fill in the blank).
- 2.) (11 pts) Use the given graph of f(x) to answer the following questions.

a.)
$$f(-3) = 6$$

c.)
$$f(4) =$$
 undefined.

d.)
$$f(x) = 3$$
: when $X = -2$ or $X = 0$

f.)
$$f(f(-2)) = \frac{f(3)}{2} = 0$$

g.) The domain of f (use <u>set</u> notation)

h.) The range of f (use any notation)

3.) (1 pt) Given some function f(x), how would you determine algebraically whether f is an even function? (What is the test for even functions?)

$$F(-x) = F(x)$$

4.) (1 pt) Given the graph of some function g(x), how would we determine if g is an odd function?

Symmetric about the arigin

5.) (3 pts) Suppose that h(x) = f(g(x)). Complete the following table. If an item cannot be determined from the given information or is undefined, put an asterisk ("*") in the given space.

x	f(x)	g(x)	h(x) = f(g(x))
0	5	2	3
1	7	1	7
2	3	0	5

$$h(i) = f(g(i)) = f(i) = 7$$

 $h(i) = f(g(i)) = f(o) = 5$
 $f(i) = f(g(o)) = h(o) = 3$

6.) (4 pts) Express the statement, "The domain of f is the set of all x's such that x does not equal 2" in set notation.

Solution: $\frac{2}{2} \times 1 \times \frac{1}{2}$

7.) (4 pts) Find the average rate of change of $f(x) = 3x^2 - 7$ on the interval [a, a+h]. Show all of your work. Hint, this requires evaluating the difference quotient.

of your work. Hint, this requires evaluating the difference quotient.

ALC ROL =
$$\frac{f(a+h) - F(a)}{(a+h) - a}$$

$$= \frac{(3(a+h)^2 - 7) - (3ax^2 - 7)}{h}$$

$$= \frac{3x^2 + 6ah + 3h^2 - 7 - 3a^2 + 7}{h}$$
Solution:
$$\frac{ba}{a} + 3h = Ave Rac$$

8.) (4 pts) If 1200 feet of fence is to be used to enclose 3 adjacent rectangular pens, find the dimensions of the maximum total area that can be enclosed (see the picture)? Express your solution in a complete sentence.

Situation in a complete sentence.

1200 =
$$4x + 2y \Rightarrow y = \frac{1200 - 4x}{2}$$

Area $A = x \cdot y \Rightarrow A(x) = x (600 - 2x)$

2 = $0.5 \times 2.0 \times$

The nectangle should be 150 ft by 300 ft.

9.) (6 pts) Let $f(x) = \sqrt{4 - x^2}$ and $g(x) = \sqrt{7 - x}$. Find f(g(x)) its domain. Place all answers in the given spaces and use set notation when expressing the domain.

a.) (2 pts) Find the domain of f (the domain of g is given).

$$D_{f} = \underbrace{\begin{cases} x & -2 \\ x & -2 \end{cases}}_{D_{g}}$$

$$D_{g} = \{x \mid x \leq 7\}$$

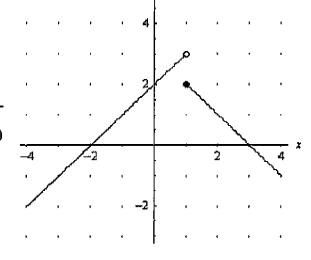
b.) (2 pts) Find f(g(x)).

$$\begin{aligned}
\zeta(g(x)) &= \zeta(\sqrt{1-x'}) = \sqrt{1-(\sqrt{1-x'})^2} \\
&= \sqrt{1-(1-x')} \\
&= \sqrt{1-(1$$

c.) (2 pts) What is the domain of $f \circ g$?

$$X \le \overline{7} \quad A L D \qquad X \ge 3$$

$$D_{for} = \frac{2x}{3} \le x \le \overline{7}$$


10.) (7 pts) Consider the graph of the piece-wise defined function h given. Use the graph to complete the following:

b.)
$$h(1) = _{\underline{}}$$

c.) The range of h (set notation):

d.) Complete the definition of h (fill in the blanks)

$$h(x) = \left\{ \begin{array}{c} \frac{x + 2}{3 - x}, \frac{x < 1}{x \ge 2} \end{array} \right.$$

11.) (5 pts) Algebraically, find the intercepts and vertex of the parabola $q(x) = 4x^2 - 12x - 40$. Circle your results.

$$y-inc$$
: $9(0)=-40$
 $x-inc$: $0=4x^2-12x-40$
 $\Rightarrow 0=x^2-3x-10$
 $\Rightarrow 0=(x-5)(x+2)$
 $\Rightarrow x=-2$ or $x=5$

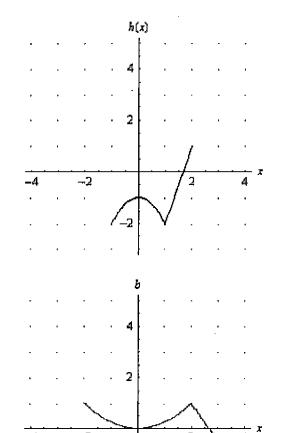
$$v=x+ex: q(x)=1x^{2}-12x-4$$

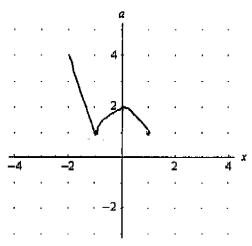
$$=4(x^{2}-3x)-40$$

$$=4(x^{2}-3x+4-4)-40$$

$$=4(x-3)^{2}-49$$

$$=(\frac{3}{2},-49)$$


12.) (4 pts) Given the graph of h(x), perform the following:


Graph the following function on the given axes

a.)
$$h(-x)+3$$

Express the equation of the function graphed in terms of h(x). For example, you might write "h(x)+1."

b.)
$$-h(\frac{1}{2}\times)$$
 - 1

Page 4 of 4