Appendix 3: Selected Solutions/Hints

(Some solutions are only partially shown)

Section 1

1. (a) $a_{1}=3+2(1)^{2}=5$
$\mathrm{a}_{2}=3+2(2)^{2}=11$
$\mathrm{a}_{3}=3+2(3)^{2}=21$
$\mathrm{a}_{4}=3+2(4)^{2}=35$
and so on where the pattern is: $5,11,21,35,53,75$
(c) $1,4,27,256,3125,46656$
(d) $f_{1}=(-1)^{1-1} \frac{1+1}{1^{2}}=2$
$\mathrm{f}_{2}=(-1)^{2-1} \frac{2+1}{2^{2}}=-\frac{3}{4}$
and so on where the pattern is: $2,-3 / 4,4 / 9,-5 / 16,6 / 25,-7 / 49$ (the pattern is easier to see if the answers are left as fractions!)

2b. (i) An easy pattern: next 3 terms are 5/6, 6/7, 7/8
(ii) $\mathrm{f}_{n}=\frac{n}{n+1}$ (n gives you 1,2,3,4,5,6,7 for numerator, and denominator is 1 larger)
3. Start with 5 , and then multiply by 3 to get successive terms:
$5,15,45,135,405,1215$
The formula for this sequence is $\mathrm{a}_{n}=5(3)^{n-1} . \mathrm{a}_{17}=5(3)^{16}=215233605$.

$$
S_{12}=\left(5(3)^{12}-5\right) /(3-1)=1328600
$$

7. $-2,4,-8,16,-32,64$
$\mathrm{S}_{8}=\left(-2(-2)^{8}-(-2)\right) /(-2-1)=-510 /-3=170$
$\mathrm{S}_{29}=\left(-2(-2)^{29}-(-2)\right) /(-2-1)=-357,913,942$
8. If the loan is L , the remaining new loan balance is $\mathrm{L}-.12 \mathrm{~L}=.88 \mathrm{~L}$. So just multiply by .88 to get the next month's balance. Hence we have a geometric sequence whose ratio is .88 . The balance after n payments is $\mathrm{B}_{n}=4400(.88)^{n-1}$ So after 1 year(12 payments) the balance is $4400(.88)^{11}=\$ 1,078.36$ (By the way, you'd be correct if you said that $\mathrm{B}_{n}=5000(.88)^{n}$). If we want to know when we have $\$ 10$ left, solve

$$
\begin{gathered}
10=4400(.88)^{n-1} \Rightarrow 10 / 4400=.88^{n-1} \Rightarrow \log (1 / 440)=(n-1) \log .88 \\
(n-1) \log .88 \Rightarrow \log (1 / 440) / \log .88=n-1 \Rightarrow n-1 \approx 47.6 \Rightarrow n \approx 48.6 \text { months }
\end{gathered}
$$

If you similarly solve the equation for $\$ 1$, you will get $n \approx 66.6$ months. (From a practical point of view, at some point you just say, "I'll pay off the balance" rather than dragging this out forever.)

Section 2

1. $\mathrm{A}=5000(1+0.06 / 12)^{12(15)}=\$ 12,270.47$
2. (c) $\mathrm{A}=10000(1+0.08 / 12)^{12(20)}=\$ 49,268.03$
(f) $\mathrm{A}=10000 \mathrm{e}^{0.08(20)}=\$ 49,530.32$
3. $\$ 600000=P\left(1+\frac{0.045}{12}\right)^{12(15)} \Rightarrow P=\frac{\$ 600000}{\left(1+\frac{0.045}{12}\right)^{12(15)}}=\$ 305,879.77$
4. $A=\$ 17,425.64$
5. ≈ 7 yrs 10 months
6. ≈ 128.31 months ≈ 10.7 years

Section 3

1. $r_{e f f}=\left(1+\frac{0.056}{365}\right)^{365}-1 \approx 0.0576=5.76 \%$
2. Solve $0.072=\mathrm{e}^{r}-1$. (show work) $\Rightarrow r \approx 6.95 \%$
3. Solve $\$ 1\left(1+\frac{r}{12}\right)^{12}=\$ 1 e^{0.07}$. (The effect on $\$ 1$ for one year should be the same). Taking the $12^{\text {th }}$ root, $1+\frac{r}{12}=\left(e^{0.07}\right)^{1 / 12} \Rightarrow$ you finish the work.

Section 4

1. $F V=7000 \frac{(1+0.07 / 2)^{2(15)}-1}{0.07 / 2}=\$ 361,358.74$
2. Solve $54000=P \frac{(1+0.075 / 12)^{12(10)}-1}{0.075 / 12}$. You should get $P=\$ 303.49$.
3. $\$ 238,129.46$
4. $\$ 87,743.68$

Section 5

1. $P m t=1300 \frac{0.18 / 12}{1-(1+0.18 / 12)^{-12(2)}}=\$ 64.90$

Since you made 24 payments of $\$ 64.90$, the stereo cost $24(64.90)$ or $\$ 1,557.60$. The extra over the $\$ 1,300$ is the interest you paid.
3. We need an approximate down payment of $\$ 564$.
5. We need to solve the equation below for m. This is another job for logarithms.

$$
\begin{aligned}
& \$ 932.73=\$ 125,000\left(\frac{\frac{0.078}{12}}{1-\left(1+\frac{0.078}{12}\right)^{-m}}\right) \\
& \Rightarrow \$ 932.73\left(1-\left(1+\frac{0.078}{12}\right)^{-m}\right)=\$ 125,000\left(\frac{0.078}{12}\right)
\end{aligned}
$$

$$
m \approx 316.2 \text { months (} \approx 26 \text { years } 4 \text { months) }
$$

$$
\text { (take the log of both sides and solve for } m \text {.) }
$$

316 months at $\$ 932.73$ per month gives a total of $\$ 294,742.68$, a savings of $\$ 21,147.36$. If you use 316.2 for your value of m, you'll get an answer of $\$ 20,960.81$ for savings.
7. You will save $\$ 13,388.21$. You take out $\$ 13,388.00$ for your down payment. What you still owe is $\$ 30,500-\$ 13,388=\$ 17,112$. This will be the loan you take out. Your monthly payment is $\$ 354.39$.

Appendix 2: Miscellaneous Problems

1. $\$ 41,447.03$
2. $\mathrm{r}_{\mathrm{eff}} \approx 0.04576 \ldots \approx 4.58 \%$
3. $F V=1000 \frac{(1+0.08 / 4)^{15(4)}-1}{0.08 / 4}=\$ 114,051.54$ This is put in a savings account
(assuming no additional monthly payments)
$A=\$ 114,051.54 e^{0.06(10)}=\$ 207,815.46$
4. Payment is $\$ 538.52$
